Epileptic seizure detection using CHB-MIT dataset: The overlooked perspectives

脑电图 计算机科学 癫痫发作 癫痫 人工智能 分类器(UML) 模式识别(心理学) 随机森林 事件(粒子物理) 机器学习 心理学 神经科学 量子力学 物理
作者
Emran Ali,Maia Angelova,Chandan Karmakar
出处
期刊:Royal Society Open Science [The Royal Society]
卷期号:11 (5) 被引量:1
标识
DOI:10.1098/rsos.230601
摘要

Epilepsy is a life-threatening neurological condition. Manual detection of epileptic seizures (ES) is laborious and burdensome. Machine learning techniques applied to electroencephalography (EEG) signals are widely used for automatic seizure detection. Some key factors are worth considering for the real-world applicability of such systems: (i) continuous EEG data typically has a higher class imbalance; (ii) higher variability across subjects is present in physiological signals such as EEG; and (iii) seizure event detection is more practical than random segment detection. Most prior studies failed to address these crucial factors altogether for seizure detection. In this study, we intend to investigate a generalized cross-subject seizure event detection system using the continuous EEG signals from the CHB-MIT dataset that considers all these overlooked aspects. A 5-second non-overlapping window is used to extract 92 features from 22 EEG channels; however, the most significant 32 features from each channel are used in experimentation. Seizure classification is done using a Random Forest (RF) classifier for segment detection, followed by a post-processing method used for event detection. Adopting all the above-mentioned essential aspects, the proposed event detection system achieved 72.63% and 75.34% sensitivity for subject-wise 5-fold and leave-one-out analyses, respectively. This study presents the real-world scenario for ES event detectors and furthers the understanding of such detection systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YMAO发布了新的文献求助10
2秒前
科研小白包完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
Abi发布了新的文献求助10
3秒前
可爱的函函应助zzw采纳,获得10
3秒前
4秒前
4秒前
念安完成签到,获得积分10
4秒前
potatozhou发布了新的文献求助10
5秒前
5秒前
5秒前
所所应助柏123采纳,获得10
6秒前
6秒前
Owen应助star采纳,获得10
7秒前
坚定青柏发布了新的文献求助10
7秒前
8秒前
赘婿应助自然青亦采纳,获得10
8秒前
学习吧澧发布了新的文献求助10
9秒前
另一种感觉完成签到,获得积分10
9秒前
研友_nxGqeL完成签到 ,获得积分10
9秒前
10秒前
Jackie完成签到,获得积分10
10秒前
微笑香薇发布了新的文献求助10
10秒前
10秒前
小骨头哒发布了新的文献求助10
11秒前
11秒前
11秒前
清脆南蕾完成签到,获得积分10
11秒前
balabala完成签到,获得积分10
12秒前
科目三应助开放的煎蛋采纳,获得10
12秒前
852应助长孙友容采纳,获得10
12秒前
爆米花应助li采纳,获得10
12秒前
13秒前
Akim应助YMAO采纳,获得10
13秒前
wanci应助风中的文龙采纳,获得10
13秒前
ipsjie发布了新的文献求助10
14秒前
奥利奥发布了新的文献求助10
14秒前
Leon完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246