GANMarked: Using Secure GAN for Information Hiding in Digital Images

计算机科学 信息隐藏 计算机图形学(图像) 计算机视觉 图像(数学)
作者
Himanshu Kumar Singh,Naman Baranwal,Kedar Nath Singh,Amit Kumar Singh
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tce.2024.3406956
摘要

As digital images become increasingly sophisticated, they raise significant security concerns, including the copyright violation, data leakage and identity theft. Deep learning-based data hiding techniques conceals mark within media carriers, enabling both error-free mark extraction and lossless carrier restoration. However, the challenge of enhancing watermark robustness data while ensuring imperceptibility, security, embedding capacity, and model security becomes increasingly pronounced in deep learning environment. In this paper, we present GANMarked, a robust watermarking method embedding a secure mark into the media carriers, based on a generative adversarial network (GAN). First, we utilize an improved autoencoder-based network for secure generation of encoded mark by encoding two individual watermarks into one. Second, the encoded mark imperceptibly embedding into the media carriers using GAN network. Third, the extraction network considers only the marked media as input and robustly recovers the hidden mark at the receiver side. In addition to media security, we fine-tuned the deep watermarking network using secret trigger key to verify the ownership of suspicious models if any piracy or infringements occur. Lastly, decoder network reconstructs the encoded media into the individual one. Our method has been empirically validated across multiple standard datasets, consistently maintaining high imperceptibility, robustness and security, even with variations in hybrid noise during mark extraction. Further, the results demonstrate that the proposed method significantly outperforms other existing methods in terms of imperceptibility and robustness while ensuring reversibility and security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海完成签到,获得积分10
1秒前
1秒前
CRane完成签到,获得积分10
2秒前
3秒前
zhuzhu完成签到,获得积分10
3秒前
3秒前
3秒前
嘉博学长发布了新的文献求助10
3秒前
酷炫书芹发布了新的文献求助30
4秒前
4秒前
萤火虫发布了新的文献求助10
4秒前
夜翼完成签到,获得积分10
5秒前
自觉如风完成签到,获得积分10
5秒前
丹丹完成签到,获得积分10
8秒前
汉堡包应助mitty采纳,获得10
8秒前
YY完成签到 ,获得积分20
9秒前
我爱科研发布了新的文献求助10
9秒前
嘉博学长完成签到,获得积分10
9秒前
minus完成签到,获得积分10
9秒前
12秒前
12秒前
Owen应助11采纳,获得10
13秒前
1234发布了新的文献求助10
15秒前
研友_VZG7GZ应助酷炫书芹采纳,获得10
15秒前
alexlpb完成签到,获得积分10
15秒前
星辰大海发布了新的文献求助10
16秒前
16秒前
Ava应助Sunyanying采纳,获得10
17秒前
WWZ发布了新的文献求助10
18秒前
ezio完成签到 ,获得积分0
18秒前
Shiku发布了新的文献求助10
19秒前
19秒前
那个笨笨发布了新的文献求助10
19秒前
虚幻幻然完成签到 ,获得积分10
21秒前
yeah完成签到 ,获得积分10
24秒前
从前从前发布了新的文献求助20
24秒前
英勇的烤鸡完成签到,获得积分10
26秒前
26秒前
mm完成签到 ,获得积分10
26秒前
scxl2000完成签到,获得积分10
27秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117311
求助须知:如何正确求助?哪些是违规求助? 2767174
关于积分的说明 7690172
捐赠科研通 2422538
什么是DOI,文献DOI怎么找? 1286330
科研通“疑难数据库(出版商)”最低求助积分说明 620284
版权声明 599856