GANMarked: Using Secure GAN for Information Hiding in Digital Images

计算机科学 信息隐藏 计算机图形学(图像) 计算机视觉 图像(数学)
作者
Himanshu Kumar Singh,Naman Baranwal,Kedar Nath Singh,Amit Kumar Singh
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (3): 6189-6195 被引量:2
标识
DOI:10.1109/tce.2024.3406956
摘要

As digital images become increasingly sophisticated, they raise significant security concerns, including the copyright violation, data leakage and identity theft. Deep learning-based data hiding techniques conceals mark within media carriers, enabling both error-free mark extraction and lossless carrier restoration. However, the challenge of enhancing watermark robustness data while ensuring imperceptibility, security, embedding capacity, and model security becomes increasingly pronounced in deep learning environment. In this paper, we present GANMarked, a robust watermarking method embedding a secure mark into the media carriers, based on a generative adversarial network (GAN). First, we utilize an improved autoencoder-based network for secure generation of encoded mark by encoding two individual watermarks into one. Second, the encoded mark imperceptibly embedding into the media carriers using GAN network. Third, the extraction network considers only the marked media as input and robustly recovers the hidden mark at the receiver side. In addition to media security, we fine-tuned the deep watermarking network using secret trigger key to verify the ownership of suspicious models if any piracy or infringements occur. Lastly, decoder network reconstructs the encoded media into the individual one. Our method has been empirically validated across multiple standard datasets, consistently maintaining high imperceptibility, robustness and security, even with variations in hybrid noise during mark extraction. Further, the results demonstrate that the proposed method significantly outperforms other existing methods in terms of imperceptibility and robustness while ensuring reversibility and security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
朱荧荧发布了新的文献求助10
1秒前
paomo完成签到,获得积分20
1秒前
1秒前
1秒前
卞卞发布了新的文献求助10
1秒前
2秒前
2秒前
小章鱼完成签到,获得积分20
3秒前
bjbbh发布了新的文献求助30
4秒前
Biyanchao发布了新的文献求助10
4秒前
我是老大应助chen采纳,获得10
5秒前
liang完成签到 ,获得积分10
5秒前
summer完成签到,获得积分10
5秒前
脑洞疼应助sota采纳,获得10
5秒前
小章鱼发布了新的文献求助30
6秒前
Singularity应助粥粥爱糊糊采纳,获得10
6秒前
筋筋子发布了新的文献求助10
6秒前
情怀应助啦啦啦采纳,获得10
7秒前
YataMisaki发布了新的文献求助10
7秒前
7秒前
SYLH举报的风格求助涉嫌违规
8秒前
小豆豆应助wst1988采纳,获得30
8秒前
YAMO一发布了新的文献求助10
8秒前
8秒前
贤惠的白开水完成签到 ,获得积分10
8秒前
9秒前
现代的访曼应助Li采纳,获得20
9秒前
9秒前
JamesPei应助高分子采纳,获得10
11秒前
11秒前
兔BF完成签到,获得积分10
11秒前
12秒前
13秒前
SYLH应助孤独的幻香采纳,获得10
13秒前
14秒前
balabala发布了新的文献求助10
15秒前
老实小白菜完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993