亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable deep clustering survival machines for Alzheimer’s disease subtype discovery

聚类分析 判别式 人工智能 机器学习 计算机科学 分类 模式识别(心理学) 数据挖掘
作者
Bojian Hou,Zixuan Wen,Jingxuan Bao,R.F Zhang,Boning Tong,Shu Yang,Junhao Wen,Yuhan Cui,Jason H. Moore,Andrew J. Saykin,Heng Huang,Paul M. Thompson,Marylyn D. Ritchie,Christos Davatzikos,Li Shen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103231-103231 被引量:2
标识
DOI:10.1016/j.media.2024.103231
摘要

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Aimeee发布了新的文献求助10
刚刚
天天快乐应助tdtk采纳,获得10
2秒前
mdomse2109发布了新的文献求助10
4秒前
李雅琳完成签到 ,获得积分10
7秒前
上官若男应助qlh采纳,获得10
7秒前
开放素完成签到 ,获得积分0
11秒前
WuFen完成签到 ,获得积分10
15秒前
24秒前
26秒前
傅家庆完成签到 ,获得积分10
28秒前
32秒前
shaylie完成签到 ,获得积分10
33秒前
Owen应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
浮浮世世应助科研通管家采纳,获得30
41秒前
浮游应助科研通管家采纳,获得10
41秒前
Owen应助科研通管家采纳,获得10
41秒前
44秒前
ilk666完成签到,获得积分10
46秒前
1997SD完成签到,获得积分10
48秒前
ding应助伶俐的高烽采纳,获得10
50秒前
dolabmu完成签到 ,获得积分10
52秒前
55秒前
56秒前
Dr.YYF.发布了新的文献求助10
57秒前
CipherSage应助Zylan采纳,获得10
58秒前
HD发布了新的文献求助10
59秒前
1997SD发布了新的文献求助10
59秒前
1分钟前
tdtk发布了新的文献求助10
1分钟前
昆工完成签到 ,获得积分10
1分钟前
1分钟前
Lau发布了新的文献求助10
1分钟前
yzy完成签到 ,获得积分10
1分钟前
Dr.YYF.完成签到,获得积分10
1分钟前
HD完成签到,获得积分10
1分钟前
William_l_c完成签到,获得积分10
1分钟前
Zilch驳回了cbj应助
1分钟前
1分钟前
HD关闭了HD文献求助
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493698
求助须知:如何正确求助?哪些是违规求助? 4591739
关于积分的说明 14434492
捐赠科研通 4524114
什么是DOI,文献DOI怎么找? 2478624
邀请新用户注册赠送积分活动 1463650
关于科研通互助平台的介绍 1436456