Interpretable deep clustering survival machines for Alzheimer’s disease subtype discovery

聚类分析 判别式 人工智能 机器学习 计算机科学 分类 模式识别(心理学) 数据挖掘
作者
Bojian Hou,Zixuan Wen,Jingxuan Bao,R.F Zhang,Boning Tong,Shu Yang,Junhao Wen,Yuhan Cui,Jason H. Moore,Andrew J. Saykin,Heng Huang,Paul M. Thompson,Marylyn D. Ritchie,Christos Davatzikos,Li Shen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103231-103231 被引量:2
标识
DOI:10.1016/j.media.2024.103231
摘要

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助永梦双星采纳,获得10
1秒前
1秒前
小呆完成签到 ,获得积分10
1秒前
欢呼的芹发布了新的文献求助10
1秒前
2秒前
hh完成签到,获得积分10
2秒前
科研通AI6应助yixin采纳,获得10
2秒前
夏cai发布了新的文献求助30
3秒前
3秒前
4秒前
mnm发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
无极微光发布了新的文献求助20
6秒前
6秒前
7秒前
badjack发布了新的文献求助20
7秒前
ZunyeLiu发布了新的文献求助10
7秒前
8秒前
乔佳怡完成签到,获得积分10
8秒前
Rachel发布了新的文献求助10
8秒前
xin发布了新的文献求助10
9秒前
彭于晏应助mnm采纳,获得10
10秒前
乔达摩完成签到 ,获得积分0
11秒前
CipherSage应助dw采纳,获得10
11秒前
12秒前
13秒前
陈瑞完成签到,获得积分10
13秒前
123发布了新的文献求助10
14秒前
15秒前
15秒前
江睦月完成签到,获得积分10
16秒前
16秒前
Orange应助Iris采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
winwin_chan完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687