Interpretable deep clustering survival machines for Alzheimer’s disease subtype discovery

聚类分析 判别式 人工智能 机器学习 计算机科学 分类 模式识别(心理学) 数据挖掘
作者
Bojian Hou,Zixuan Wen,Jingxuan Bao,R.F Zhang,Boning Tong,Shu Yang,Junhao Wen,Yuhan Cui,Jason H. Moore,Andrew J. Saykin,Heng Huang,Paul M. Thompson,Marylyn D. Ritchie,Christos Davatzikos,Li Shen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103231-103231 被引量:1
标识
DOI:10.1016/j.media.2024.103231
摘要

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MiManchi发布了新的文献求助10
1秒前
ymlllym发布了新的文献求助10
1秒前
2秒前
慕青应助文艺不凡采纳,获得10
2秒前
马润泽发布了新的文献求助10
2秒前
ptalala完成签到,获得积分10
2秒前
kanoz完成签到 ,获得积分10
2秒前
在水一方应助玛卡巴卡采纳,获得10
2秒前
3秒前
JamesPei应助1123采纳,获得10
4秒前
乐乐应助霸的彤采纳,获得10
5秒前
5秒前
虚心的垣完成签到 ,获得积分10
5秒前
李健的小迷弟应助Jemmy采纳,获得10
5秒前
6秒前
一只鱼发布了新的文献求助10
6秒前
科研通AI2S应助嗄巧采纳,获得10
6秒前
东郭水云发布了新的文献求助10
7秒前
7秒前
车道出完成签到,获得积分10
8秒前
8秒前
doctorbin完成签到 ,获得积分10
8秒前
共享精神应助lilongcheng采纳,获得10
9秒前
9秒前
zbzfp发布了新的文献求助10
10秒前
10秒前
11秒前
芋圆葡萄完成签到,获得积分10
11秒前
12秒前
689发布了新的文献求助10
12秒前
豚骨拉面发布了新的文献求助10
13秒前
研友_VZG7GZ应助yangbinsci0827采纳,获得10
13秒前
13秒前
zgt01发布了新的文献求助10
13秒前
shilong.yang发布了新的文献求助30
13秒前
zzz发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
不是山谷完成签到,获得积分10
15秒前
16秒前
迷路海蓝发布了新的文献求助20
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958850
求助须知:如何正确求助?哪些是违规求助? 3505102
关于积分的说明 11122496
捐赠科研通 3236558
什么是DOI,文献DOI怎么找? 1788899
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802794