Interpretable deep clustering survival machines for Alzheimer’s disease subtype discovery

聚类分析 判别式 人工智能 机器学习 计算机科学 分类 模式识别(心理学) 数据挖掘
作者
Bojian Hou,Zixuan Wen,Jingxuan Bao,R.F Zhang,Boning Tong,Shu Yang,Junhao Wen,Yuhan Cui,Jason H. Moore,Andrew J. Saykin,Heng Huang,Paul M. Thompson,Marylyn D. Ritchie,Christos Davatzikos,Li Shen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103231-103231
标识
DOI:10.1016/j.media.2024.103231
摘要

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
丘比特应助Miaka采纳,获得10
3秒前
ClarkClarkson发布了新的文献求助10
4秒前
言小鱼完成签到,获得积分10
6秒前
快哒哒哒发布了新的文献求助10
10秒前
研友_8KX15L发布了新的文献求助30
11秒前
11秒前
12秒前
JamesPei应助番茄炖西红柿采纳,获得10
12秒前
Ferry发布了新的文献求助10
13秒前
whff完成签到,获得积分10
14秒前
我是美丽发布了新的文献求助20
15秒前
内向乞完成签到 ,获得积分10
19秒前
19秒前
22秒前
23秒前
文艺人生发布了新的文献求助10
24秒前
lm完成签到,获得积分10
25秒前
更深的蓝完成签到,获得积分10
25秒前
小柏学长完成签到,获得积分20
25秒前
26秒前
孟伟发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
研友_8KX15L发布了新的文献求助30
29秒前
快哒哒哒完成签到,获得积分10
29秒前
天天天才发布了新的文献求助20
30秒前
禾平发布了新的文献求助30
30秒前
小柏学长发布了新的文献求助10
31秒前
31秒前
山头人二号完成签到,获得积分10
31秒前
32秒前
edo完成签到,获得积分20
33秒前
amumu发布了新的文献求助10
33秒前
Chris发布了新的文献求助10
33秒前
34秒前
36秒前
36秒前
香蕉觅云应助小柏学长采纳,获得10
37秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206987
求助须知:如何正确求助?哪些是违规求助? 2856316
关于积分的说明 8104204
捐赠科研通 2521502
什么是DOI,文献DOI怎么找? 1354661
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613292