Interpretable deep clustering survival machines for Alzheimer’s disease subtype discovery

聚类分析 判别式 人工智能 机器学习 计算机科学 分类 模式识别(心理学) 数据挖掘
作者
Bojian Hou,Zixuan Wen,Jingxuan Bao,R.F Zhang,Boning Tong,Shu Yang,Junhao Wen,Yuhan Cui,Jason H. Moore,Andrew J. Saykin,Heng Huang,Paul M. Thompson,Marylyn D. Ritchie,Christos Davatzikos,Li Shen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103231-103231 被引量:2
标识
DOI:10.1016/j.media.2024.103231
摘要

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李李完成签到,获得积分10
刚刚
乔雨欣发布了新的文献求助10
刚刚
Saisaki发布了新的文献求助30
1秒前
香蕉若南发布了新的文献求助10
2秒前
慕青应助ChenJiahao采纳,获得10
2秒前
我就是我发布了新的文献求助10
2秒前
xiaotouming发布了新的文献求助10
3秒前
ukie完成签到,获得积分20
3秒前
3秒前
薇MemoryaR发布了新的文献求助10
3秒前
Ava应助自觉大碗采纳,获得10
3秒前
轴承完成签到 ,获得积分10
3秒前
FashionBoy应助BX1823采纳,获得10
4秒前
4秒前
lllhhh7完成签到,获得积分10
5秒前
xuezhixia完成签到,获得积分10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
6秒前
wu发布了新的文献求助10
6秒前
apiaji应助科研通管家采纳,获得20
6秒前
天天快乐应助辛勤的振家采纳,获得10
6秒前
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
情怀应助瘦瘦幻梦采纳,获得10
6秒前
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
RICH完成签到,获得积分10
7秒前
挖掘机应助科研通管家采纳,获得150
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
星辰大海应助科研通管家采纳,获得20
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
Hello应助稳重中心采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5099418
求助须知:如何正确求助?哪些是违规求助? 4311309
关于积分的说明 13434264
捐赠科研通 4138907
什么是DOI,文献DOI怎么找? 2267559
邀请新用户注册赠送积分活动 1270553
关于科研通互助平台的介绍 1206856