Interpretable deep clustering survival machines for Alzheimer’s disease subtype discovery

聚类分析 判别式 人工智能 机器学习 计算机科学 分类 模式识别(心理学) 数据挖掘
作者
Bojian Hou,Zixuan Wen,Jingxuan Bao,R.F Zhang,Boning Tong,Shu Yang,Junhao Wen,Yuhan Cui,Jason H. Moore,Andrew J. Saykin,Heng Huang,Paul M. Thompson,Marylyn D. Ritchie,Christos Davatzikos,Li Shen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103231-103231 被引量:1
标识
DOI:10.1016/j.media.2024.103231
摘要

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔡宇滔发布了新的文献求助10
1秒前
Jessie完成签到,获得积分10
1秒前
2秒前
kingwill举报JIE求助涉嫌违规
4秒前
linhappy发布了新的文献求助10
4秒前
6秒前
Hello应助灿烂sunfly采纳,获得10
6秒前
CYY发布了新的文献求助10
6秒前
8秒前
run完成签到 ,获得积分10
8秒前
Ava应助yueban采纳,获得10
10秒前
11秒前
11秒前
魔幻的大碗完成签到,获得积分20
11秒前
12秒前
12秒前
科研通AI2S应助Derson采纳,获得10
13秒前
13秒前
惟愿星恒发布了新的文献求助10
13秒前
彭于晏应助野性的沉鱼采纳,获得10
13秒前
14秒前
碧蓝酬海发布了新的文献求助10
16秒前
酷波er应助胖圈儿采纳,获得10
16秒前
16秒前
orixero应助zhuoxin采纳,获得10
16秒前
小阿博发布了新的文献求助10
17秒前
harden9159完成签到,获得积分10
17秒前
unless完成签到,获得积分10
17秒前
Bismarck发布了新的文献求助10
18秒前
hongjiawen完成签到,获得积分10
19秒前
19秒前
LYL完成签到,获得积分10
19秒前
20秒前
我是老大应助AAA卡车司机采纳,获得10
20秒前
21秒前
小阿博完成签到,获得积分10
23秒前
sci发布了新的文献求助10
23秒前
24秒前
所所应助蜗牛茜茜采纳,获得10
24秒前
111完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537931
求助须知:如何正确求助?哪些是违规求助? 3972654
关于积分的说明 12306475
捐赠科研通 3639434
什么是DOI,文献DOI怎么找? 2003881
邀请新用户注册赠送积分活动 1039207
科研通“疑难数据库(出版商)”最低求助积分说明 928594