Interpretable deep clustering survival machines for Alzheimer’s disease subtype discovery

聚类分析 判别式 人工智能 机器学习 计算机科学 分类 模式识别(心理学) 数据挖掘
作者
Bojian Hou,Zixuan Wen,Jingxuan Bao,R.F Zhang,Boning Tong,Shu Yang,Junhao Wen,Yuhan Cui,Jason H. Moore,Andrew J. Saykin,Heng Huang,Paul M. Thompson,Marylyn D. Ritchie,Christos Davatzikos,Li Shen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103231-103231 被引量:2
标识
DOI:10.1016/j.media.2024.103231
摘要

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
臭臭完成签到 ,获得积分10
刚刚
今后应助富贵采纳,获得10
1秒前
NexusExplorer应助tayyy采纳,获得10
1秒前
xyt625发布了新的文献求助10
4秒前
脆筒发布了新的文献求助10
4秒前
可爱的函函应助木马瑶采纳,获得10
4秒前
5秒前
哦哦关注了科研通微信公众号
9秒前
10秒前
冷酷恶天发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
小杭76应助lina采纳,获得10
13秒前
欢呼的雨琴完成签到 ,获得积分10
14秒前
嘉悦发布了新的文献求助10
14秒前
sun448526发布了新的文献求助10
15秒前
xyt625完成签到,获得积分10
18秒前
19秒前
cquank完成签到,获得积分10
19秒前
19秒前
22秒前
22秒前
22秒前
23秒前
木马瑶发布了新的文献求助10
24秒前
土豆发布了新的文献求助10
24秒前
AYJ应助sun448526采纳,获得10
24秒前
凶狠的姚完成签到 ,获得积分10
25秒前
Hx完成签到,获得积分10
26秒前
DUDU发布了新的文献求助10
26秒前
27秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
斧王发布了新的文献求助10
28秒前
Claudia黄完成签到,获得积分10
29秒前
31秒前
32秒前
一颗葡萄完成签到,获得积分10
33秒前
庄博一完成签到,获得积分10
34秒前
慢慢发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431754
求助须知:如何正确求助?哪些是违规求助? 4544599
关于积分的说明 14193134
捐赠科研通 4463678
什么是DOI,文献DOI怎么找? 2446845
邀请新用户注册赠送积分活动 1438154
关于科研通互助平台的介绍 1414878