Interpretable deep clustering survival machines for Alzheimer’s disease subtype discovery

聚类分析 判别式 人工智能 机器学习 计算机科学 分类 模式识别(心理学) 数据挖掘
作者
Bojian Hou,Zixuan Wen,Jingxuan Bao,R.F Zhang,Boning Tong,Shu Yang,Junhao Wen,Yuhan Cui,Jason H. Moore,Andrew J. Saykin,Heng Huang,Paul M. Thompson,Marylyn D. Ritchie,Christos Davatzikos,Li Shen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103231-103231 被引量:2
标识
DOI:10.1016/j.media.2024.103231
摘要

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cangmingzi发布了新的文献求助10
刚刚
QXR发布了新的文献求助10
刚刚
zzzhhh发布了新的文献求助10
1秒前
1秒前
糕冷小萍发布了新的文献求助10
1秒前
所所应助真实的友采纳,获得10
1秒前
完美世界应助liuynnn采纳,获得30
1秒前
2秒前
ANXU完成签到,获得积分10
2秒前
小L发布了新的文献求助20
2秒前
pishuang发布了新的文献求助10
2秒前
3秒前
Hh发布了新的文献求助10
3秒前
丘比特应助czz014采纳,获得10
4秒前
5秒前
栀子完成签到,获得积分10
5秒前
5秒前
嘻嘻哈哈应助Xiaoxiao采纳,获得20
6秒前
小乌龟完成签到,获得积分10
6秒前
挽忆逍遥完成签到 ,获得积分10
6秒前
研究侠完成签到,获得积分10
7秒前
coolplex发布了新的文献求助10
7秒前
lsh发布了新的文献求助10
7秒前
7秒前
Owen应助哈哈哈哈采纳,获得10
8秒前
8秒前
QXR完成签到,获得积分10
8秒前
8秒前
小手冰凉完成签到,获得积分10
8秒前
共享精神应助陈柚瑾采纳,获得10
8秒前
CodeCraft应助鲤鱼凡松采纳,获得10
9秒前
琳琳发布了新的文献求助20
9秒前
完美世界应助mdjinij采纳,获得10
9秒前
顶呱呱完成签到 ,获得积分10
9秒前
酷波er应助zhuzhu的江湖采纳,获得10
9秒前
9秒前
wanci应助耶耶粘豆包采纳,获得10
10秒前
杳子尧发布了新的文献求助10
11秒前
威武外套完成签到,获得积分10
11秒前
充电宝应助cun采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260499
求助须知:如何正确求助?哪些是违规求助? 4421947
关于积分的说明 13764660
捐赠科研通 4296098
什么是DOI,文献DOI怎么找? 2357222
邀请新用户注册赠送积分活动 1353594
关于科研通互助平台的介绍 1314874