Classification of motor imagery using chaotic entropy based on sub-band EEG source localization

脑电图 计算机科学 运动表象 混乱的 人工智能 熵(时间箭头) 模式识别(心理学) 计算机视觉 语音识别 脑-机接口 心理学 神经科学 物理 量子力学
作者
Jicheng Bi,Yunyuan Gao,Peng Zheng,Yuliang Ma
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (3): 036016-036016 被引量:1
标识
DOI:10.1088/1741-2552/ad4914
摘要

Abstract Objective. Electroencephalography (EEG) has been widely used in motor imagery (MI) research by virtue of its high temporal resolution and low cost, but its low spatial resolution is still a major criticism. The EEG source localization (ESL) algorithm effectively improves the spatial resolution of the signal by inverting the scalp EEG to extrapolate the cortical source signal, thus enhancing the classification accuracy. Approach. To address the problem of poor spatial resolution of EEG signals, this paper proposed a sub-band source chaotic entropy feature extraction method based on sub-band ESL. Firstly, the preprocessed EEG signals were filtered into 8 sub-bands. Each sub-band signal was source localized respectively to reveal the activation patterns of specific frequency bands of the EEG signals and the activities of specific brain regions in the MI task. Then, approximate entropy, fuzzy entropy and permutation entropy were extracted from the source signal as features to quantify the complexity and randomness of the signal. Finally, the classification of different MI tasks was achieved using support vector machine. Main result. The proposed method was validated on two MI public datasets (brain–computer interface (BCI) competition III IVa, BCI competition IV 2a) and the results showed that the classification accuracies were higher than the existing methods. Significance. The spatial resolution of the signal was improved by sub-band EEG localization in the paper, which provided a new idea for EEG MI research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李喜喜完成签到,获得积分10
刚刚
1秒前
cyy完成签到,获得积分10
1秒前
猫毛发布了新的文献求助10
3秒前
3秒前
6秒前
试遣愚忠发布了新的文献求助10
7秒前
彭于彦祖应助淡定落雁采纳,获得30
8秒前
田様应助大聪明采纳,获得30
10秒前
lyx发布了新的文献求助10
10秒前
11秒前
马路完成签到 ,获得积分10
15秒前
17秒前
温乘云完成签到,获得积分10
17秒前
妖精完成签到 ,获得积分10
19秒前
19秒前
19秒前
由富发布了新的文献求助10
22秒前
wjw完成签到,获得积分10
22秒前
视野胤发布了新的文献求助10
24秒前
25秒前
田様应助zhaoyuqing采纳,获得10
25秒前
蝉一个夏天完成签到,获得积分10
26秒前
猫毛完成签到,获得积分10
30秒前
lilili完成签到,获得积分10
31秒前
32秒前
kxdxng完成签到,获得积分10
32秒前
CodeCraft应助lyx采纳,获得10
32秒前
ke研白发布了新的文献求助10
32秒前
斯文败类应助茶多一点酚采纳,获得10
33秒前
34秒前
kento发布了新的文献求助10
35秒前
35秒前
36秒前
大聪明发布了新的文献求助30
39秒前
39秒前
ke研白完成签到,获得积分10
40秒前
CX330完成签到 ,获得积分10
41秒前
傻瓜子发布了新的文献求助10
41秒前
Serendipity完成签到,获得积分10
41秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164233
求助须知:如何正确求助?哪些是违规求助? 2814956
关于积分的说明 7907185
捐赠科研通 2474517
什么是DOI,文献DOI怎么找? 1317571
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228