Classification of motor imagery using chaotic entropy based on sub-band EEG source localization

脑电图 计算机科学 运动表象 混乱的 人工智能 熵(时间箭头) 模式识别(心理学) 计算机视觉 语音识别 脑-机接口 心理学 神经科学 物理 量子力学
作者
Jicheng Bi,Yunyuan Gao,Peng Zheng,Yuliang Ma
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (3): 036016-036016 被引量:1
标识
DOI:10.1088/1741-2552/ad4914
摘要

Abstract Objective. Electroencephalography (EEG) has been widely used in motor imagery (MI) research by virtue of its high temporal resolution and low cost, but its low spatial resolution is still a major criticism. The EEG source localization (ESL) algorithm effectively improves the spatial resolution of the signal by inverting the scalp EEG to extrapolate the cortical source signal, thus enhancing the classification accuracy. Approach. To address the problem of poor spatial resolution of EEG signals, this paper proposed a sub-band source chaotic entropy feature extraction method based on sub-band ESL. Firstly, the preprocessed EEG signals were filtered into 8 sub-bands. Each sub-band signal was source localized respectively to reveal the activation patterns of specific frequency bands of the EEG signals and the activities of specific brain regions in the MI task. Then, approximate entropy, fuzzy entropy and permutation entropy were extracted from the source signal as features to quantify the complexity and randomness of the signal. Finally, the classification of different MI tasks was achieved using support vector machine. Main result. The proposed method was validated on two MI public datasets (brain–computer interface (BCI) competition III IVa, BCI competition IV 2a) and the results showed that the classification accuracies were higher than the existing methods. Significance. The spatial resolution of the signal was improved by sub-band EEG localization in the paper, which provided a new idea for EEG MI research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhuboujs发布了新的文献求助10
2秒前
3秒前
华仔应助Aria采纳,获得10
3秒前
3秒前
斑马兽发布了新的文献求助10
3秒前
Ccwyhk发布了新的文献求助10
4秒前
kk完成签到,获得积分10
4秒前
赘婿应助念梦采纳,获得10
4秒前
绿豆糕驳回了iNk应助
4秒前
小马甲应助南兰杉采纳,获得10
5秒前
路宇鹏完成签到,获得积分10
6秒前
科研小黄完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助zisle采纳,获得10
6秒前
流星噬月完成签到,获得积分10
6秒前
酷波er应助Zhuzhu采纳,获得10
7秒前
123发布了新的文献求助20
7秒前
思源应助激昂的凉面采纳,获得10
7秒前
11234完成签到,获得积分10
8秒前
8秒前
科研通AI6应助nicelily采纳,获得10
8秒前
康康发布了新的文献求助10
8秒前
天天快乐应助阔达访旋采纳,获得10
9秒前
Mic应助超级的班采纳,获得10
9秒前
9秒前
zhuboujs完成签到,获得积分10
9秒前
SimonShaw完成签到,获得积分10
9秒前
10秒前
ziyu完成签到,获得积分20
10秒前
李李发布了新的文献求助10
11秒前
小二郎应助heli采纳,获得10
12秒前
12秒前
13秒前
Ylyyyyyy完成签到,获得积分20
13秒前
shawn_89完成签到,获得积分10
13秒前
科研通AI6应助科研小奶狗采纳,获得10
13秒前
14秒前
简单酒窝完成签到,获得积分20
14秒前
shelia发布了新的文献求助10
14秒前
Taozhi发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578435
求助须知:如何正确求助?哪些是违规求助? 4663226
关于积分的说明 14745504
捐赠科研通 4604000
什么是DOI,文献DOI怎么找? 2526820
邀请新用户注册赠送积分活动 1496380
关于科研通互助平台的介绍 1465718