Classification of motor imagery using chaotic entropy based on sub-band EEG source localization

脑电图 计算机科学 运动表象 混乱的 人工智能 熵(时间箭头) 模式识别(心理学) 计算机视觉 语音识别 脑-机接口 心理学 神经科学 物理 量子力学
作者
Jicheng Bi,Yunyuan Gao,Peng Zheng,Yuliang Ma
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (3): 036016-036016 被引量:1
标识
DOI:10.1088/1741-2552/ad4914
摘要

Abstract Objective. Electroencephalography (EEG) has been widely used in motor imagery (MI) research by virtue of its high temporal resolution and low cost, but its low spatial resolution is still a major criticism. The EEG source localization (ESL) algorithm effectively improves the spatial resolution of the signal by inverting the scalp EEG to extrapolate the cortical source signal, thus enhancing the classification accuracy. Approach. To address the problem of poor spatial resolution of EEG signals, this paper proposed a sub-band source chaotic entropy feature extraction method based on sub-band ESL. Firstly, the preprocessed EEG signals were filtered into 8 sub-bands. Each sub-band signal was source localized respectively to reveal the activation patterns of specific frequency bands of the EEG signals and the activities of specific brain regions in the MI task. Then, approximate entropy, fuzzy entropy and permutation entropy were extracted from the source signal as features to quantify the complexity and randomness of the signal. Finally, the classification of different MI tasks was achieved using support vector machine. Main result. The proposed method was validated on two MI public datasets (brain–computer interface (BCI) competition III IVa, BCI competition IV 2a) and the results showed that the classification accuracies were higher than the existing methods. Significance. The spatial resolution of the signal was improved by sub-band EEG localization in the paper, which provided a new idea for EEG MI research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助keyanxiaobaishu采纳,获得10
1秒前
inter发布了新的文献求助10
2秒前
SnownS发布了新的文献求助20
5秒前
6秒前
orixero应助杰果采纳,获得10
7秒前
11秒前
12秒前
bkagyin应助蓝莓西西果冻采纳,获得10
12秒前
Jodie发布了新的文献求助10
13秒前
机灵冥发布了新的文献求助10
13秒前
慕青应助朴素的松采纳,获得10
15秒前
加百莉发布了新的文献求助10
17秒前
Fitz完成签到,获得积分10
18秒前
王美美发布了新的文献求助10
22秒前
科研通AI6应助good采纳,获得10
23秒前
科研通AI6应助小巧的蓝血采纳,获得30
24秒前
尔玉完成签到 ,获得积分10
26秒前
科研通AI6应助华杰采纳,获得10
29秒前
呜呜完成签到 ,获得积分10
35秒前
欢喜的代容完成签到,获得积分10
35秒前
华仔应助动听的涵山采纳,获得10
35秒前
37秒前
孙乐777完成签到,获得积分10
39秒前
田様应助echo采纳,获得10
39秒前
王美美发布了新的文献求助10
41秒前
41秒前
小化化爱学习完成签到,获得积分10
42秒前
44秒前
隐形曼青应助阔达的嵩采纳,获得10
45秒前
科研通AI6应助echo采纳,获得10
47秒前
孙乐777发布了新的文献求助10
48秒前
嘻嘻哈哈完成签到,获得积分10
49秒前
柔弱翎完成签到,获得积分10
51秒前
留胡子的火完成签到,获得积分10
52秒前
斯文败类应助王美美采纳,获得10
54秒前
小蘑菇应助echo采纳,获得10
55秒前
小水完成签到,获得积分10
58秒前
Jasper应助tree采纳,获得10
1分钟前
galaxy完成签到 ,获得积分10
1分钟前
尊敬的擎汉完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550