Classification of motor imagery using chaotic entropy based on sub-band EEG source localization

脑电图 计算机科学 运动表象 混乱的 人工智能 熵(时间箭头) 模式识别(心理学) 计算机视觉 语音识别 脑-机接口 心理学 神经科学 物理 量子力学
作者
Jicheng Bi,Yunyuan Gao,Peng Zheng,Yuliang Ma
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (3): 036016-036016 被引量:1
标识
DOI:10.1088/1741-2552/ad4914
摘要

Abstract Objective. Electroencephalography (EEG) has been widely used in motor imagery (MI) research by virtue of its high temporal resolution and low cost, but its low spatial resolution is still a major criticism. The EEG source localization (ESL) algorithm effectively improves the spatial resolution of the signal by inverting the scalp EEG to extrapolate the cortical source signal, thus enhancing the classification accuracy. Approach. To address the problem of poor spatial resolution of EEG signals, this paper proposed a sub-band source chaotic entropy feature extraction method based on sub-band ESL. Firstly, the preprocessed EEG signals were filtered into 8 sub-bands. Each sub-band signal was source localized respectively to reveal the activation patterns of specific frequency bands of the EEG signals and the activities of specific brain regions in the MI task. Then, approximate entropy, fuzzy entropy and permutation entropy were extracted from the source signal as features to quantify the complexity and randomness of the signal. Finally, the classification of different MI tasks was achieved using support vector machine. Main result. The proposed method was validated on two MI public datasets (brain–computer interface (BCI) competition III IVa, BCI competition IV 2a) and the results showed that the classification accuracies were higher than the existing methods. Significance. The spatial resolution of the signal was improved by sub-band EEG localization in the paper, which provided a new idea for EEG MI research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潘名超完成签到,获得积分10
1秒前
1秒前
华仔应助CT666采纳,获得10
1秒前
2秒前
CangZm1完成签到 ,获得积分10
2秒前
sober发布了新的文献求助10
2秒前
乐乐应助Sg采纳,获得10
3秒前
Wz完成签到 ,获得积分10
3秒前
Ava应助拉屎很顺畅采纳,获得10
3秒前
脑洞疼应助无心的仙人掌采纳,获得10
4秒前
4秒前
思源应助神途采纳,获得10
6秒前
7秒前
岸部完成签到,获得积分10
8秒前
飘逸的花生完成签到,获得积分10
9秒前
小二郎应助笨笨百招采纳,获得10
9秒前
9秒前
浮游应助Tracy采纳,获得10
9秒前
loglm发布了新的文献求助20
10秒前
岸部发布了新的文献求助10
10秒前
iiiio发布了新的文献求助10
11秒前
小太阳发布了新的文献求助10
12秒前
所所应助蔡小娜采纳,获得10
12秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
JamesPei应助淡定小蜜蜂采纳,获得10
16秒前
田様应助不改颜色的孤星采纳,获得10
16秒前
CipherSage应助lokiyyy采纳,获得30
16秒前
18秒前
于风完成签到 ,获得积分10
18秒前
神途发布了新的文献求助10
19秒前
20秒前
21秒前
圈圈完成签到 ,获得积分10
22秒前
Bressanone发布了新的文献求助10
23秒前
落日出逃发布了新的文献求助10
24秒前
24秒前
山槐123完成签到,获得积分10
25秒前
神途完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633998
求助须知:如何正确求助?哪些是违规求助? 4729911
关于积分的说明 14987292
捐赠科研通 4791783
什么是DOI,文献DOI怎么找? 2559051
邀请新用户注册赠送积分活动 1519536
关于科研通互助平台的介绍 1479718