Classification of motor imagery using chaotic entropy based on sub-band EEG source localization

脑电图 计算机科学 运动表象 混乱的 人工智能 熵(时间箭头) 模式识别(心理学) 计算机视觉 语音识别 脑-机接口 心理学 神经科学 物理 量子力学
作者
Jicheng Bi,Yunyuan Gao,Peng Zheng,Yuliang Ma
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (3): 036016-036016 被引量:1
标识
DOI:10.1088/1741-2552/ad4914
摘要

Abstract Objective. Electroencephalography (EEG) has been widely used in motor imagery (MI) research by virtue of its high temporal resolution and low cost, but its low spatial resolution is still a major criticism. The EEG source localization (ESL) algorithm effectively improves the spatial resolution of the signal by inverting the scalp EEG to extrapolate the cortical source signal, thus enhancing the classification accuracy. Approach. To address the problem of poor spatial resolution of EEG signals, this paper proposed a sub-band source chaotic entropy feature extraction method based on sub-band ESL. Firstly, the preprocessed EEG signals were filtered into 8 sub-bands. Each sub-band signal was source localized respectively to reveal the activation patterns of specific frequency bands of the EEG signals and the activities of specific brain regions in the MI task. Then, approximate entropy, fuzzy entropy and permutation entropy were extracted from the source signal as features to quantify the complexity and randomness of the signal. Finally, the classification of different MI tasks was achieved using support vector machine. Main result. The proposed method was validated on two MI public datasets (brain–computer interface (BCI) competition III IVa, BCI competition IV 2a) and the results showed that the classification accuracies were higher than the existing methods. Significance. The spatial resolution of the signal was improved by sub-band EEG localization in the paper, which provided a new idea for EEG MI research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助ht采纳,获得10
刚刚
冷静妙海完成签到,获得积分10
刚刚
思源应助不喜采纳,获得10
刚刚
asdfzxcv应助无妄海采纳,获得10
2秒前
淡定初蓝完成签到,获得积分10
2秒前
3秒前
zwzh完成签到,获得积分10
3秒前
科研通AI6应助姜萌萌采纳,获得10
3秒前
4秒前
4秒前
yy发布了新的文献求助10
4秒前
5秒前
Rio完成签到,获得积分10
5秒前
5秒前
虚心柏柳完成签到,获得积分10
5秒前
5秒前
6秒前
须臾完成签到,获得积分10
6秒前
6秒前
6秒前
麦辣基米堡完成签到,获得积分20
7秒前
7秒前
7秒前
qiqiqi发布了新的文献求助10
8秒前
9秒前
是假的发布了新的文献求助10
9秒前
9秒前
赵丽红完成签到,获得积分10
9秒前
sunpacino完成签到,获得积分10
10秒前
xiongyuan完成签到,获得积分10
10秒前
Olivia发布了新的文献求助10
10秒前
夕荀发布了新的文献求助10
10秒前
10秒前
Jasper应助崔某采纳,获得10
11秒前
荷珠发布了新的文献求助10
11秒前
甜酒发布了新的文献求助30
12秒前
13秒前
不喜发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
wll1091完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798