Models for Exploring the Benefits of using Discrete Wavelet Transformation in HSI

转化(遗传学) 小波 计算机科学 离散小波变换 人工智能 模式识别(心理学) 小波变换 生物化学 基因 化学
作者
V. Valli Kumari,Charishma Bobbili,Vadisila Jyothi
标识
DOI:10.1109/spin60856.2024.10512231
摘要

The application of Hyper Spectral Images is increasing day-by-day, with the development of remote sensing technology. With the rapid development of Deep Learning technology, many research work focus on Classification of Hyper Spectral Images based on both spectral and spatial features extraction. It is the task of correctly predicting the class values of different pixel values present in remotely sensed HSI data. In order to achieve the accurate classification of ground features, Feature Extraction is one of the crucial step which increases the accuracy of learned models by extracting relevant features from the input data. As the HSI image consists of hundreds of continuous spectral bands, we need an effective way to extract the spectral features of the HSI images (other than CNN techniques). In this paper, we exploit two different types of Discrete wavelet transformation techniques like Haar, Daubechies (Db4) for spectral feature extraction. This in turn reduces the dimensionality of data. These spectral features are then linked to four layers of 2D CNN to extract the spatial features. The extracted features from the wavelet fusion CNN are provided further for classification. Initially factor Analysis method was used to reduce the dimensions of the HSI input data. Our experimental results conclude the better accuracy method among these, through a comparative analysis with other state-of-the-art methods. We use Overall Accuracy, Kappa Coefficient and Average Accuracy as a Performance measures on 3 benchmark datasets of Indian Pines, Salina Scene, University of Pavia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
iTaciturne完成签到,获得积分10
1秒前
朱先生发布了新的文献求助10
1秒前
yearluren完成签到,获得积分10
1秒前
2秒前
大胆的白卉完成签到 ,获得积分10
2秒前
2秒前
3秒前
zhouyms发布了新的文献求助10
3秒前
牧觅云发布了新的文献求助10
4秒前
4秒前
个性的抽象完成签到 ,获得积分10
5秒前
犹豫宛发布了新的文献求助10
5秒前
我叫小小孙呀完成签到,获得积分10
5秒前
zhang发布了新的文献求助10
5秒前
Hello应助杨梅汁采纳,获得10
6秒前
6秒前
LUJU发布了新的文献求助30
7秒前
7秒前
英俊的铭应助SpongeBob采纳,获得10
8秒前
敏感小霸王完成签到 ,获得积分10
8秒前
shufei发布了新的文献求助10
8秒前
8秒前
伍幻姬发布了新的文献求助10
9秒前
王壕发布了新的文献求助10
9秒前
zozo发布了新的文献求助10
9秒前
9秒前
10秒前
Owen应助伶俐莫茗采纳,获得10
10秒前
12秒前
12秒前
YaRu应助evy采纳,获得10
13秒前
14秒前
123发布了新的文献求助10
14秒前
15秒前
15秒前
科研通AI6应助倪维采纳,获得10
16秒前
nofear发布了新的文献求助10
16秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588315
求助须知:如何正确求助?哪些是违规求助? 4671384
关于积分的说明 14787042
捐赠科研通 4624969
什么是DOI,文献DOI怎么找? 2531757
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468276