Models for Exploring the Benefits of using Discrete Wavelet Transformation in HSI

转化(遗传学) 小波 计算机科学 离散小波变换 人工智能 模式识别(心理学) 小波变换 生物化学 基因 化学
作者
V. Valli Kumari,Charishma Bobbili,Vadisila Jyothi
标识
DOI:10.1109/spin60856.2024.10512231
摘要

The application of Hyper Spectral Images is increasing day-by-day, with the development of remote sensing technology. With the rapid development of Deep Learning technology, many research work focus on Classification of Hyper Spectral Images based on both spectral and spatial features extraction. It is the task of correctly predicting the class values of different pixel values present in remotely sensed HSI data. In order to achieve the accurate classification of ground features, Feature Extraction is one of the crucial step which increases the accuracy of learned models by extracting relevant features from the input data. As the HSI image consists of hundreds of continuous spectral bands, we need an effective way to extract the spectral features of the HSI images (other than CNN techniques). In this paper, we exploit two different types of Discrete wavelet transformation techniques like Haar, Daubechies (Db4) for spectral feature extraction. This in turn reduces the dimensionality of data. These spectral features are then linked to four layers of 2D CNN to extract the spatial features. The extracted features from the wavelet fusion CNN are provided further for classification. Initially factor Analysis method was used to reduce the dimensions of the HSI input data. Our experimental results conclude the better accuracy method among these, through a comparative analysis with other state-of-the-art methods. We use Overall Accuracy, Kappa Coefficient and Average Accuracy as a Performance measures on 3 benchmark datasets of Indian Pines, Salina Scene, University of Pavia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
xrkxrk完成签到 ,获得积分0
刚刚
1秒前
AN给晚秋的求助进行了留言
1秒前
LockheedChengdu完成签到,获得积分10
2秒前
excellent_shit完成签到,获得积分10
2秒前
4秒前
陈咪咪完成签到,获得积分10
4秒前
one发布了新的文献求助10
5秒前
共享精神应助挡挡采纳,获得10
6秒前
li完成签到,获得积分10
6秒前
hbu123完成签到,获得积分10
7秒前
像只猫发布了新的文献求助10
7秒前
能干妙竹发布了新的文献求助10
7秒前
7秒前
8秒前
light发布了新的文献求助10
9秒前
9秒前
9秒前
gmjinfeng完成签到,获得积分0
9秒前
li发布了新的文献求助10
10秒前
wzt完成签到,获得积分10
10秒前
11秒前
12秒前
LSY完成签到 ,获得积分10
13秒前
鹤昀完成签到,获得积分10
13秒前
14秒前
14秒前
mingyu发布了新的文献求助10
15秒前
xiu发布了新的文献求助10
16秒前
华仔应助asdf采纳,获得10
17秒前
善良的疯丫头完成签到,获得积分10
17秒前
wzt发布了新的文献求助10
18秒前
cheng完成签到,获得积分10
18秒前
18秒前
Orange应助gjl采纳,获得10
18秒前
18秒前
lylyly发布了新的文献求助10
19秒前
19秒前
我爱科研完成签到 ,获得积分10
20秒前
小罗在无锡应助年年年年采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498977
求助须知:如何正确求助?哪些是违规求助? 4596023
关于积分的说明 14451856
捐赠科研通 4529128
什么是DOI,文献DOI怎么找? 2481834
邀请新用户注册赠送积分活动 1465825
关于科研通互助平台的介绍 1438777