Models for Exploring the Benefits of using Discrete Wavelet Transformation in HSI

转化(遗传学) 小波 计算机科学 离散小波变换 人工智能 模式识别(心理学) 小波变换 生物化学 化学 基因
作者
V. Valli Kumari,Charishma Bobbili,Vadisila Jyothi
标识
DOI:10.1109/spin60856.2024.10512231
摘要

The application of Hyper Spectral Images is increasing day-by-day, with the development of remote sensing technology. With the rapid development of Deep Learning technology, many research work focus on Classification of Hyper Spectral Images based on both spectral and spatial features extraction. It is the task of correctly predicting the class values of different pixel values present in remotely sensed HSI data. In order to achieve the accurate classification of ground features, Feature Extraction is one of the crucial step which increases the accuracy of learned models by extracting relevant features from the input data. As the HSI image consists of hundreds of continuous spectral bands, we need an effective way to extract the spectral features of the HSI images (other than CNN techniques). In this paper, we exploit two different types of Discrete wavelet transformation techniques like Haar, Daubechies (Db4) for spectral feature extraction. This in turn reduces the dimensionality of data. These spectral features are then linked to four layers of 2D CNN to extract the spatial features. The extracted features from the wavelet fusion CNN are provided further for classification. Initially factor Analysis method was used to reduce the dimensions of the HSI input data. Our experimental results conclude the better accuracy method among these, through a comparative analysis with other state-of-the-art methods. We use Overall Accuracy, Kappa Coefficient and Average Accuracy as a Performance measures on 3 benchmark datasets of Indian Pines, Salina Scene, University of Pavia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘洋发布了新的文献求助10
1秒前
SCI硬通货完成签到 ,获得积分10
1秒前
上官若男应助淡然紫寒采纳,获得10
2秒前
2秒前
2秒前
Dreamsli完成签到,获得积分10
3秒前
虚幻青曼完成签到,获得积分10
3秒前
TTT完成签到,获得积分10
4秒前
waomi完成签到 ,获得积分10
5秒前
于丽萍发布了新的文献求助10
5秒前
阿湫发布了新的文献求助10
7秒前
Ava应助可靠的又亦采纳,获得10
9秒前
1111111发布了新的文献求助10
9秒前
10秒前
今后应助飞翔的企鹅采纳,获得10
14秒前
真水无香发布了新的文献求助10
15秒前
脑洞疼应助马库拉格采纳,获得10
15秒前
顾矜应助lele采纳,获得10
15秒前
15秒前
科研公主完成签到,获得积分10
19秒前
20秒前
时生完成签到 ,获得积分10
21秒前
我是老大应助愉快又莲采纳,获得10
22秒前
可爱的函函应助平淡博采纳,获得10
22秒前
24秒前
浮游应助彪壮的绮烟采纳,获得10
25秒前
在水一方应助ztt采纳,获得10
25秒前
25秒前
25秒前
浮游应助花开城北采纳,获得10
26秒前
29秒前
butterfly发布了新的文献求助10
29秒前
马库拉格发布了新的文献求助10
29秒前
30秒前
娜na完成签到,获得积分10
32秒前
33秒前
34秒前
35秒前
李健应助冯前浪采纳,获得10
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408