MLm5C: A high-precision human RNA 5-methylcytosine sites predictor based on a combination of hybrid machine learning models

5-甲基胞嘧啶 计算生物学 表观遗传学 机器学习 鉴定(生物学) 计算机科学 核糖核酸 人类疾病 人工智能 生物信息学 生物 遗传学 基因 DNA甲基化 基因表达 植物
作者
Hiroyuki Kurata,Md. Harun-Or-Roshid,Md Mehedi Hasan,Sho Tsukiyama,Kazuhiro Maeda,Balachandran Manavalan
出处
期刊:Methods [Elsevier BV]
卷期号:227: 37-47 被引量:3
标识
DOI:10.1016/j.ymeth.2024.05.004
摘要

RNA modification serves as a pivotal component in numerous biological processes. Among the prevalent modifications, 5-methylcytosine (m5C) significantly influences mRNA export, translation efficiency and cell differentiation and are also associated with human diseases, including Alzheimer's disease, autoimmune disease, cancer, and cardiovascular diseases. Identification of m5C is critically responsible for understanding the RNA modification mechanisms and the epigenetic regulation of associated diseases. However, the large-scale experimental identification of m5C present significant challenges due to labor intensity and time requirements. Several computational tools, using machine learning, have been developed to supplement experimental methods, but identifying these sites lack accuracy and efficiency. In this study, we introduce a new predictor, MLm5C, for precise prediction of m5C sites using sequence data. Briefly, we evaluated eleven RNA sequence-derived features with four basic machine learning algorithms to generate baseline models. From these 44 models, we ranked them based on their performance and subsequently stacked the Top 20 baseline models as the best model, named MLm5C. The MLm5C outperformed the-state-of-the-art predictors. Notably, the optimization of the sequence length surrounding the modification sites significantly improved the prediction performance. MLm5C is an invaluable tool in accelerating the detection of m5C sites within the human genome, thereby facilitating in the characterization of their roles in post-transcriptional regulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
昏睡的蟠桃应助duanhuiyuan采纳,获得200
2秒前
叨叨完成签到,获得积分10
2秒前
充电宝应助默11采纳,获得10
3秒前
Hello应助默11采纳,获得10
3秒前
ding应助默11采纳,获得10
3秒前
3秒前
魏你大爷发布了新的文献求助10
3秒前
搜集达人应助red采纳,获得10
3秒前
4秒前
4秒前
Jasper应助7Hours采纳,获得10
4秒前
研友_VZG7GZ应助迷路的睫毛采纳,获得10
4秒前
5秒前
5秒前
震震应助夕荀采纳,获得20
5秒前
5秒前
沉寂完成签到,获得积分10
6秒前
6秒前
8秒前
9秒前
脑洞疼应助默11采纳,获得10
9秒前
思源应助默11采纳,获得10
9秒前
JamesPei应助默11采纳,获得10
9秒前
orixero应助默11采纳,获得10
9秒前
Akim应助默11采纳,获得10
9秒前
酷波er应助默11采纳,获得10
10秒前
隐形曼青应助默11采纳,获得10
10秒前
爆米花应助默11采纳,获得10
10秒前
汉堡包应助默11采纳,获得10
10秒前
Akim应助默11采纳,获得10
10秒前
Leaf发布了新的文献求助10
10秒前
科研通AI5应助zzhang采纳,获得10
10秒前
11秒前
美满花生发布了新的文献求助10
12秒前
冰魂应助能干的烧鹅采纳,获得10
13秒前
冯冯申博了么完成签到,获得积分20
13秒前
zouyiming完成签到 ,获得积分10
13秒前
华仔应助南京吴彦祖采纳,获得10
14秒前
Lucas应助南京吴彦祖采纳,获得10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775279
求助须知:如何正确求助?哪些是违规求助? 3320994
关于积分的说明 10202941
捐赠科研通 3035869
什么是DOI,文献DOI怎么找? 1665800
邀请新用户注册赠送积分活动 797104
科研通“疑难数据库(出版商)”最低求助积分说明 757712