已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MLm5C: A high-precision human RNA 5-methylcytosine sites predictor based on a combination of hybrid machine learning models

5-甲基胞嘧啶 计算生物学 表观遗传学 机器学习 鉴定(生物学) 计算机科学 核糖核酸 人类疾病 人工智能 生物信息学 生物 遗传学 基因 DNA甲基化 基因表达 植物
作者
Hiroyuki Kurata,Md. Harun-Or-Roshid,Md Mehedi Hasan,Sho Tsukiyama,Kazuhiro Maeda,Balachandran Manavalan
出处
期刊:Methods [Elsevier]
卷期号:227: 37-47
标识
DOI:10.1016/j.ymeth.2024.05.004
摘要

RNA modification serves as a pivotal component in numerous biological processes. Among the prevalent modifications, 5-methylcytosine (m5C) significantly influences mRNA export, translation efficiency and cell differentiation and are also associated with human diseases, including Alzheimer's disease, autoimmune disease, cancer, and cardiovascular diseases. Identification of m5C is critically responsible for understanding the RNA modification mechanisms and the epigenetic regulation of associated diseases. However, the large-scale experimental identification of m5C present significant challenges due to labor intensity and time requirements. Several computational tools, using machine learning, have been developed to supplement experimental methods, but identifying these sites lack accuracy and efficiency. In this study, we introduce a new predictor, MLm5C, for precise prediction of m5C sites using sequence data. Briefly, we evaluated eleven RNA sequence-derived features with four basic machine learning algorithms to generate baseline models. From these 44 models, we ranked them based on their performance and subsequently stacked the Top 20 baseline models as the best model, named MLm5C. The MLm5C outperformed the-state-of-the-art predictors. Notably, the optimization of the sequence length surrounding the modification sites significantly improved the prediction performance. MLm5C is an invaluable tool in accelerating the detection of m5C sites within the human genome, thereby facilitating in the characterization of their roles in post-transcriptional regulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逯逯逯发布了新的文献求助10
刚刚
dj发布了新的文献求助10
1秒前
传奇3应助于某人采纳,获得10
1秒前
2秒前
田様应助小琦琦采纳,获得10
3秒前
852应助king采纳,获得10
4秒前
维时发布了新的文献求助10
5秒前
chenshiyi185完成签到,获得积分20
5秒前
6秒前
7秒前
五六七发布了新的文献求助10
8秒前
龚仕杰完成签到 ,获得积分10
9秒前
9秒前
dj完成签到 ,获得积分10
10秒前
所所应助lily88采纳,获得10
14秒前
15秒前
15秒前
20224273完成签到 ,获得积分20
16秒前
Evelyn完成签到 ,获得积分10
16秒前
Going发布了新的文献求助10
19秒前
InfoNinja应助闪闪的傲蕾采纳,获得30
19秒前
20秒前
MRJ发布了新的文献求助10
20秒前
21秒前
21秒前
冷傲的咖啡豆完成签到 ,获得积分10
22秒前
25秒前
上进生完成签到,获得积分10
26秒前
五香完成签到 ,获得积分10
26秒前
舒适逊发布了新的文献求助10
26秒前
27秒前
闪闪的傲蕾完成签到,获得积分20
30秒前
上进生发布了新的文献求助10
30秒前
31秒前
31秒前
31秒前
科研通AI2S应助Going采纳,获得10
32秒前
32秒前
33秒前
Lucas应助小会采纳,获得30
34秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142306
求助须知:如何正确求助?哪些是违规求助? 2793200
关于积分的说明 7805956
捐赠科研通 2449516
什么是DOI,文献DOI怎么找? 1303345
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601300