End-to-End lightweight Transformer-Based neural network for grasp detection towards fruit robotic handling

抓住 人工神经网络 变压器 端到端原则 计算机科学 人工智能 工程类 汽车工程 嵌入式系统 实时计算 电气工程 电压 程序设计语言
作者
Congmin Guo,Chenhao Zhu,Yuchen Liu,Renjun Huang,Boyuan Cao,Qingzhen Zhu,Ranxin Zhang,Baohua Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:221: 109014-109014 被引量:24
标识
DOI:10.1016/j.compag.2024.109014
摘要

Robotic picking and placing are common operations for fruits and vegetables in grading, sorting or packaging systems. However, due to the diverse shapes and irregular surfaces of fruits and vegetables, improper handling during the picking process can result in detachment or damage. To ensure the correct grasping positions, it is necessary to design targeted neural network algorithms for achieving intelligent sorting. Therefore, this study focuses on 20 common fruit and vegetable agricultural products to develop a deep learning-based grasping detection algorithm model. By combining local features from convolutional neural networks with global features from Transformers, a lightweight end-to-end fruit and vegetable grasping detection network, MDETR, is constructed. Experimental results demonstrate that the MDETR algorithm not only achieves high accuracy in fruit and vegetable grasping detection but also improves the speed of pose detection. The average time required for detecting a single image is approximately 29.6 ms, meeting real-time requirements. The algorithm achieves a pose detection accuracy rate of 96 %, enabling precise detection and positioning of fruit and vegetable poses and achieving fast and accurate picking and placing. Additionally, a Pybullet simulation platform is developed for conducting grasping experiments, where the MDETR model achieves a grasping success rate of 88.9 %. This validates the robustness and generalization capabilities of the proposed detection algorithm model, designed specifically for fruit and vegetable grasping tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Una完成签到,获得积分10
1秒前
小野发布了新的文献求助10
1秒前
852应助艾可白采纳,获得10
2秒前
李爱国应助ST采纳,获得10
2秒前
酷波er应助哒哒哒采纳,获得10
3秒前
3秒前
GXWFDC完成签到 ,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
虎啊虎啊发布了新的文献求助10
6秒前
6秒前
墨染完成签到 ,获得积分10
7秒前
7秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Return应助科研通管家采纳,获得10
8秒前
rebubu应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
8秒前
852应助科研通管家采纳,获得10
8秒前
8秒前
chen应助科研通管家采纳,获得10
8秒前
游子轩应助科研通管家采纳,获得10
9秒前
123456完成签到,获得积分10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
Return应助科研通管家采纳,获得10
9秒前
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
Orange应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得200
9秒前
珞槿发布了新的文献求助10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
chen应助科研通管家采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800