亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

End-to-End lightweight Transformer-Based neural network for grasp detection towards fruit robotic handling

抓住 人工神经网络 变压器 端到端原则 计算机科学 人工智能 工程类 汽车工程 嵌入式系统 实时计算 电气工程 电压 程序设计语言
作者
Congmin Guo,Chenhao Zhu,Yuchen Liu,Renjun Huang,Boyuan Cao,Qingzhen Zhu,Ranxin Zhang,Baohua Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:221: 109014-109014 被引量:24
标识
DOI:10.1016/j.compag.2024.109014
摘要

Robotic picking and placing are common operations for fruits and vegetables in grading, sorting or packaging systems. However, due to the diverse shapes and irregular surfaces of fruits and vegetables, improper handling during the picking process can result in detachment or damage. To ensure the correct grasping positions, it is necessary to design targeted neural network algorithms for achieving intelligent sorting. Therefore, this study focuses on 20 common fruit and vegetable agricultural products to develop a deep learning-based grasping detection algorithm model. By combining local features from convolutional neural networks with global features from Transformers, a lightweight end-to-end fruit and vegetable grasping detection network, MDETR, is constructed. Experimental results demonstrate that the MDETR algorithm not only achieves high accuracy in fruit and vegetable grasping detection but also improves the speed of pose detection. The average time required for detecting a single image is approximately 29.6 ms, meeting real-time requirements. The algorithm achieves a pose detection accuracy rate of 96 %, enabling precise detection and positioning of fruit and vegetable poses and achieving fast and accurate picking and placing. Additionally, a Pybullet simulation platform is developed for conducting grasping experiments, where the MDETR model achieves a grasping success rate of 88.9 %. This validates the robustness and generalization capabilities of the proposed detection algorithm model, designed specifically for fruit and vegetable grasping tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旧月关注了科研通微信公众号
2秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
完美世界应助科研通管家采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
完美世界应助科研通管家采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
40秒前
45秒前
willlee完成签到 ,获得积分10
46秒前
46秒前
LIJinlin完成签到,获得积分10
47秒前
雪白傲薇完成签到 ,获得积分10
50秒前
LIJinlin发布了新的文献求助10
50秒前
扯扯完成签到,获得积分20
1分钟前
1分钟前
讨厌水煮蛋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
扯扯发布了新的文献求助10
1分钟前
liuliu发布了新的文献求助10
1分钟前
讨厌水煮蛋发布了新的文献求助100
1分钟前
555完成签到,获得积分10
1分钟前
1分钟前
sera发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
老不靠谱发布了新的文献求助10
1分钟前
刘大宝发布了新的文献求助10
1分钟前
缪忆寒完成签到,获得积分10
1分钟前
充电宝应助刘大宝采纳,获得10
2分钟前
lovelife完成签到,获得积分10
2分钟前
sera完成签到 ,获得积分10
2分钟前
刘大宝完成签到,获得积分20
2分钟前
城。完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
yangzai完成签到 ,获得积分10
3分钟前
CJH104完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772837
求助须知:如何正确求助?哪些是违规求助? 5603302
关于积分的说明 15430141
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639601
邀请新用户注册赠送积分活动 1587507
关于科研通互助平台的介绍 1542432