End-to-End lightweight Transformer-Based neural network for grasp detection towards fruit robotic handling

抓住 人工神经网络 变压器 端到端原则 计算机科学 人工智能 工程类 汽车工程 嵌入式系统 实时计算 电气工程 电压 程序设计语言
作者
Congmin Guo,Chenhao Zhu,Yuchen Liu,Renjun Huang,Boyuan Cao,Qingzhen Zhu,Ranxin Zhang,Baohua Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:221: 109014-109014
标识
DOI:10.1016/j.compag.2024.109014
摘要

Robotic picking and placing are common operations for fruits and vegetables in grading, sorting or packaging systems. However, due to the diverse shapes and irregular surfaces of fruits and vegetables, improper handling during the picking process can result in detachment or damage. To ensure the correct grasping positions, it is necessary to design targeted neural network algorithms for achieving intelligent sorting. Therefore, this study focuses on 20 common fruit and vegetable agricultural products to develop a deep learning-based grasping detection algorithm model. By combining local features from convolutional neural networks with global features from Transformers, a lightweight end-to-end fruit and vegetable grasping detection network, MDETR, is constructed. Experimental results demonstrate that the MDETR algorithm not only achieves high accuracy in fruit and vegetable grasping detection but also improves the speed of pose detection. The average time required for detecting a single image is approximately 29.6 ms, meeting real-time requirements. The algorithm achieves a pose detection accuracy rate of 96 %, enabling precise detection and positioning of fruit and vegetable poses and achieving fast and accurate picking and placing. Additionally, a Pybullet simulation platform is developed for conducting grasping experiments, where the MDETR model achieves a grasping success rate of 88.9 %. This validates the robustness and generalization capabilities of the proposed detection algorithm model, designed specifically for fruit and vegetable grasping tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
36456657应助西瓜采纳,获得10
1秒前
稳重的汉堡完成签到,获得积分10
1秒前
1秒前
趣多多发布了新的文献求助10
1秒前
1秒前
yoke完成签到,获得积分10
2秒前
萌新完成签到,获得积分10
2秒前
空白完成签到,获得积分10
2秒前
和谐的阁完成签到,获得积分10
2秒前
王灿灿完成签到,获得积分10
2秒前
3秒前
3秒前
Dharma_Bums完成签到,获得积分10
3秒前
4秒前
窦房结完成签到,获得积分10
5秒前
Ava应助Osii采纳,获得10
5秒前
5秒前
5秒前
鳗鱼焦发布了新的文献求助10
7秒前
舒适初晴完成签到 ,获得积分10
7秒前
Lighters完成签到,获得积分10
7秒前
Lu发布了新的文献求助30
7秒前
7秒前
嘻嘻嘻完成签到,获得积分10
7秒前
Yvonne完成签到 ,获得积分10
8秒前
土豪的初阳完成签到,获得积分20
8秒前
fairy完成签到,获得积分10
8秒前
nglmy77完成签到 ,获得积分10
8秒前
tingtingzhang完成签到 ,获得积分10
8秒前
LYegoist完成签到,获得积分10
8秒前
舒心的耷完成签到,获得积分10
9秒前
9秒前
SHENYL发布了新的文献求助10
9秒前
摆烂昊完成签到,获得积分20
9秒前
9秒前
Lll发布了新的文献求助10
11秒前
邢绿凝发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159344
求助须知:如何正确求助?哪些是违规求助? 2810413
关于积分的说明 7887812
捐赠科研通 2469306
什么是DOI,文献DOI怎么找? 1314746
科研通“疑难数据库(出版商)”最低求助积分说明 630710
版权声明 602012