End-to-End lightweight Transformer-Based neural network for grasp detection towards fruit robotic handling

抓住 人工神经网络 变压器 端到端原则 计算机科学 人工智能 工程类 汽车工程 嵌入式系统 实时计算 电气工程 电压 程序设计语言
作者
Congmin Guo,Chenhao Zhu,Yuchen Liu,Renjun Huang,Boyuan Cao,Qingzhen Zhu,Ranxin Zhang,Baohua Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:221: 109014-109014 被引量:17
标识
DOI:10.1016/j.compag.2024.109014
摘要

Robotic picking and placing are common operations for fruits and vegetables in grading, sorting or packaging systems. However, due to the diverse shapes and irregular surfaces of fruits and vegetables, improper handling during the picking process can result in detachment or damage. To ensure the correct grasping positions, it is necessary to design targeted neural network algorithms for achieving intelligent sorting. Therefore, this study focuses on 20 common fruit and vegetable agricultural products to develop a deep learning-based grasping detection algorithm model. By combining local features from convolutional neural networks with global features from Transformers, a lightweight end-to-end fruit and vegetable grasping detection network, MDETR, is constructed. Experimental results demonstrate that the MDETR algorithm not only achieves high accuracy in fruit and vegetable grasping detection but also improves the speed of pose detection. The average time required for detecting a single image is approximately 29.6 ms, meeting real-time requirements. The algorithm achieves a pose detection accuracy rate of 96 %, enabling precise detection and positioning of fruit and vegetable poses and achieving fast and accurate picking and placing. Additionally, a Pybullet simulation platform is developed for conducting grasping experiments, where the MDETR model achieves a grasping success rate of 88.9 %. This validates the robustness and generalization capabilities of the proposed detection algorithm model, designed specifically for fruit and vegetable grasping tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
乖加油发布了新的文献求助10
1秒前
AARON完成签到,获得积分10
1秒前
CipherSage应助自然的岱周采纳,获得30
1秒前
打打应助taotie采纳,获得10
2秒前
lc339完成签到,获得积分10
2秒前
下次一定完成签到,获得积分10
3秒前
3秒前
可乐完成签到,获得积分10
3秒前
佟语雪完成签到,获得积分10
3秒前
爆米花应助蜡笔小新采纳,获得10
3秒前
sduweiyu完成签到 ,获得积分10
4秒前
4秒前
欧阳发布了新的文献求助10
4秒前
666发布了新的文献求助10
5秒前
朴素幼晴发布了新的文献求助10
5秒前
lyt完成签到,获得积分10
5秒前
大苹果完成签到,获得积分10
5秒前
6秒前
kawa完成签到,获得积分10
6秒前
大卜发布了新的文献求助10
6秒前
Akim应助杨衡采纳,获得10
6秒前
7秒前
CipherSage应助科研通管家采纳,获得20
7秒前
郭郝应助lanxin采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
luck完成签到,获得积分10
7秒前
ding应助南风知我意采纳,获得10
8秒前
8秒前
烟花应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
yznfly应助科研通管家采纳,获得30
9秒前
ding应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
外向依白完成签到,获得积分20
10秒前
Lucas应助科研通管家采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257658
求助须知:如何正确求助?哪些是违规求助? 4419729
关于积分的说明 13757299
捐赠科研通 4293125
什么是DOI,文献DOI怎么找? 2355777
邀请新用户注册赠送积分活动 1352208
关于科研通互助平台的介绍 1313034