超收敛
搭配(遥感)
正则化无网格法
奇异边界法
正交配置
搭配法
数学
非线性系统
应用数学
边界(拓扑)
数值分析
移动最小二乘法
边值问题
无网格法
数学分析
计算机科学
有限元法
边界元法
物理
微分方程
常微分方程
量子力学
机器学习
热力学
作者
Huanyang Hou,Xiaolin Li
标识
DOI:10.1016/j.amc.2024.128801
摘要
The stabilized collocation method (SCM) is a promising meshless collocation method that can overcome the instability defects in the classical direct collocation method. To improve the performance of the SCM, a superconvergent stabilized collocation method (SSCM) is developed in this paper for linear and nonlinear elliptic problems through the use of the moving least squares (MLS) approximation and its smoothed derivatives. Accuracy of the SSCM and the SCM is analyzed with an emphasis on the influence of boundary conditions, and precise error measures are presented for different types of boundary conditions. Numerical results validate the superconvergence of the SSCM and confirm the theoretical analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI