Public attention and psychological trends towards waste reduction: A large-scale data analysis based on social media

政府(语言学) 社会化媒体 大数据 比例(比率) 情绪分析 心理学 业务 公共关系 环境经济学 政治学 经济 地理 计算机科学 数据挖掘 人工智能 哲学 地图学 法学 语言学
作者
Gu Xiao,Feiyu Chen,Jing Hou,Yuting Dong,Yujie Wang,Jiashun Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:467: 142873-142873 被引量:1
标识
DOI:10.1016/j.jclepro.2024.142873
摘要

In the digital era, using social media big data to capture the true views and psychological trends shown by the public regarding waste reduction could considerably improve the formulation of targeted waste reduction policies and guide residents to participate in environmental governance from the source side. This study used big data mining technology to trawl 617,771 pieces of waste reduction text from a typical social media site (Sina Microblog). A machine learning algorithm model was used to identify the psychological and cognitive focus of the public and their preferences based on large-scale text data. The temporal and spatial differences in public attention trends, hot topic trends, and sentiment trends were also investigated. The results showed that the public attention level was related to the release of policies by government and that public attention in the southeast coastal areas was higher than that in the northwest inland areas. Moreover, waste reduction had a "working attribute" because the public paid more attention to waste reduction during working hours (i.e., 9:00–12:00 and 15:00–18:00) than during leisure hours. In terms of individual heterogeneity, males were initiators of the topic, whereas females were followers. In particular, participation by young people in waste reduction discussions was higher than for other groups. The topic analysis showed that public attention followed a cooperative construction pattern that had multiple entities, including the individual, community, and government. Overall, the public sentiment score towards waste reduction increased year by year during the study period, with positive sentiment posts accounting for over 70% of the total number of blog posts, and that the vast majority of residents had a positive attitude towards waste reduction. This study expanded current research knowledge by exploring the public attitude response to waste reduction from a social media perspective. The study will help the government to effectively intervene in public behavior tendencies toward waste reduction from the psychological perspective and provided important implications about how the government can enhance its use of social media to effectively guide public opinion and improve policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张流筝完成签到 ,获得积分10
2秒前
Orange应助四月采纳,获得10
4秒前
yannis2020发布了新的文献求助10
4秒前
温暖乌龟发布了新的文献求助10
5秒前
小艾同学关注了科研通微信公众号
6秒前
属下存在感完成签到,获得积分10
6秒前
6秒前
摩卡完成签到,获得积分10
6秒前
8秒前
8秒前
赘婿应助wujun采纳,获得10
9秒前
10秒前
11秒前
11秒前
小萌发布了新的文献求助10
13秒前
13秒前
ding应助宝宝采纳,获得10
13秒前
13秒前
pingping发布了新的文献求助10
14秒前
天天快乐应助li采纳,获得10
14秒前
能干的邹发布了新的文献求助10
15秒前
yuwshuihen发布了新的文献求助10
15秒前
贲碧曼完成签到 ,获得积分10
15秒前
大约在冬季完成签到,获得积分10
16秒前
踏实的幻珊完成签到,获得积分10
18秒前
18秒前
18秒前
李龙龙应助beleve采纳,获得10
18秒前
20秒前
23秒前
平常煎饼完成签到,获得积分10
24秒前
decademe发布了新的文献求助10
24秒前
25秒前
四月发布了新的文献求助10
26秒前
27秒前
28秒前
yuwshuihen完成签到,获得积分10
28秒前
小艾同学发布了新的文献求助20
28秒前
黄青青完成签到,获得积分10
29秒前
张茂润完成签到,获得积分10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053