A multivariate migrating birds optimization algorithm based on disjunctive graph neighborhood for scenic spot vehicle scheduling

计算机科学 多元统计 图形 调度(生产过程) 算法 数学优化 理论计算机科学 机器学习 数学
作者
Rong Fei,Zilong Wang,Junhuai Li,Facun Zhang,Hailong Peng,Junzhi Cheng
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:: 111870-111870
标识
DOI:10.1016/j.asoc.2024.111870
摘要

For the group travel, reasonable vehicle scheduling needs to consider constraints such as traffic distance and route conflict, which is common in many vehicle transportation scheduling systems, and it is crucial for operators to improve operational efficiency and provide a higher quality service experience. In this paper, a scenic spot vehicle scheduling problem is designed based the real-world scenario. In order to improve the search efficiency and maintain the diversity of solutions , an intelligent scheduling algorithm based on improved migrating birds optimization(gMBO) is proposed. The gMBO applies a neighborhood structure based on disjunctive graph to accelerate the solution search in the touring phase by avoiding redundancy. Besides, leveraging the left–right sequential queue characteristics of the MBO algorithm, gMBO utilizes two mechanisms to enhance the interaction between queues in the leader replacement stage, which can expand the search space of solutions and at the same time to maintain population diversity . Finally, we consider using the POX crossover operator in the individual, it is well adapted to the characteristics of the problem can reduce the generation of unreasonable solutions. The computational results show that the neighborhood structure is feasible. Considering the problem of scenic spot vehicle scheduling in practical urban applications, the multivariate migrating birds optimization algorithm based on disjunctive graph neighborhood is more effective than the MILP and other three meta-heuristic algorithms, and the optimal solution is obtained under the same stopping criteria, with an average RPD of 2.16. It has the advantages of fast convergence and good robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默小博完成签到,获得积分10
刚刚
李健的小迷弟应助不二采纳,获得10
1秒前
Zx_1993应助ccxb1014ft采纳,获得20
1秒前
JAU发布了新的文献求助10
1秒前
1秒前
宇文青寒完成签到,获得积分10
1秒前
1秒前
坚定寒松发布了新的文献求助10
1秒前
1秒前
bei完成签到,获得积分10
2秒前
单薄黑米发布了新的文献求助30
2秒前
好运6连发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
年轻枕头完成签到,获得积分10
3秒前
4秒前
luoxuezhiyin完成签到,获得积分10
4秒前
月月鸟发布了新的文献求助10
4秒前
NexusExplorer应助嘟嘟采纳,获得10
4秒前
hecarli完成签到,获得积分0
5秒前
平淡一兰完成签到,获得积分10
5秒前
耍酷糜完成签到 ,获得积分10
5秒前
5秒前
SciGPT应助小鹿采纳,获得10
5秒前
潇洒的世界完成签到,获得积分10
6秒前
什么什么哇偶完成签到 ,获得积分10
6秒前
胖达发布了新的文献求助10
6秒前
6秒前
凤头鹅几完成签到,获得积分10
6秒前
陆柒子发布了新的文献求助10
7秒前
7秒前
打打应助科研小乞丐采纳,获得10
7秒前
小二郎应助62ccc采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
研友_VZG7GZ应助解美霞采纳,获得10
8秒前
楚昕越发布了新的文献求助50
8秒前
ZZ完成签到,获得积分10
8秒前
乐乐应助天天破大防采纳,获得10
8秒前
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5119112
求助须知:如何正确求助?哪些是违规求助? 4324929
关于积分的说明 13474611
捐赠科研通 4158140
什么是DOI,文献DOI怎么找? 2278807
邀请新用户注册赠送积分活动 1280560
关于科研通互助平台的介绍 1219303