亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multivariate migrating birds optimization algorithm based on disjunctive graph neighborhood for scenic spot vehicle scheduling

计算机科学 多元统计 图形 调度(生产过程) 算法 数学优化 理论计算机科学 机器学习 数学
作者
Rong Fei,Zilong Wang,Junhuai Li,Facun Zhang,Hailong Peng,Junzhi Cheng
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:: 111870-111870
标识
DOI:10.1016/j.asoc.2024.111870
摘要

For the group travel, reasonable vehicle scheduling needs to consider constraints such as traffic distance and route conflict, which is common in many vehicle transportation scheduling systems, and it is crucial for operators to improve operational efficiency and provide a higher quality service experience. In this paper, a scenic spot vehicle scheduling problem is designed based the real-world scenario. In order to improve the search efficiency and maintain the diversity of solutions , an intelligent scheduling algorithm based on improved migrating birds optimization(gMBO) is proposed. The gMBO applies a neighborhood structure based on disjunctive graph to accelerate the solution search in the touring phase by avoiding redundancy. Besides, leveraging the left–right sequential queue characteristics of the MBO algorithm, gMBO utilizes two mechanisms to enhance the interaction between queues in the leader replacement stage, which can expand the search space of solutions and at the same time to maintain population diversity . Finally, we consider using the POX crossover operator in the individual, it is well adapted to the characteristics of the problem can reduce the generation of unreasonable solutions. The computational results show that the neighborhood structure is feasible. Considering the problem of scenic spot vehicle scheduling in practical urban applications, the multivariate migrating birds optimization algorithm based on disjunctive graph neighborhood is more effective than the MILP and other three meta-heuristic algorithms, and the optimal solution is obtained under the same stopping criteria, with an average RPD of 2.16. It has the advantages of fast convergence and good robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的萝发布了新的文献求助10
1秒前
小蘑菇应助siyuyu采纳,获得10
3秒前
7秒前
8秒前
kkk完成签到,获得积分10
11秒前
47秒前
53秒前
1分钟前
华佗自修指北完成签到,获得积分10
1分钟前
独特的初彤完成签到 ,获得积分10
1分钟前
1分钟前
siyuyu发布了新的文献求助10
1分钟前
1分钟前
2213sss完成签到,获得积分10
1分钟前
微笑发布了新的文献求助10
2分钟前
豆乳米麻薯完成签到 ,获得积分10
2分钟前
幽默赛君完成签到 ,获得积分10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Cris完成签到,获得积分10
2分钟前
siyuyu完成签到,获得积分10
2分钟前
2分钟前
甘罗完成签到,获得积分10
2分钟前
甘罗发布了新的文献求助10
2分钟前
3分钟前
Cris发布了新的文献求助10
3分钟前
斯文败类应助白风夕月采纳,获得10
3分钟前
妮妮爱生物完成签到,获得积分10
3分钟前
zxcsdfa应助薄衫采纳,获得10
3分钟前
4分钟前
奋斗的萝发布了新的文献求助10
4分钟前
123456完成签到,获得积分20
4分钟前
4分钟前
白风夕月发布了新的文献求助10
4分钟前
123456关注了科研通微信公众号
4分钟前
ding应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463632
求助须知:如何正确求助?哪些是违规求助? 3057036
关于积分的说明 9055136
捐赠科研通 2746926
什么是DOI,文献DOI怎么找? 1507179
科研通“疑难数据库(出版商)”最低求助积分说明 696424
邀请新用户注册赠送积分活动 695936