A multivariate migrating birds optimization algorithm based on disjunctive graph neighborhood for scenic spot vehicle scheduling

计算机科学 多元统计 图形 调度(生产过程) 算法 数学优化 理论计算机科学 机器学习 数学
作者
Rong Fei,Zilong Wang,Junhuai Li,Facun Zhang,Hailong Peng,Junzhi Cheng
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:: 111870-111870
标识
DOI:10.1016/j.asoc.2024.111870
摘要

For the group travel, reasonable vehicle scheduling needs to consider constraints such as traffic distance and route conflict, which is common in many vehicle transportation scheduling systems, and it is crucial for operators to improve operational efficiency and provide a higher quality service experience. In this paper, a scenic spot vehicle scheduling problem is designed based the real-world scenario. In order to improve the search efficiency and maintain the diversity of solutions , an intelligent scheduling algorithm based on improved migrating birds optimization(gMBO) is proposed. The gMBO applies a neighborhood structure based on disjunctive graph to accelerate the solution search in the touring phase by avoiding redundancy. Besides, leveraging the left–right sequential queue characteristics of the MBO algorithm, gMBO utilizes two mechanisms to enhance the interaction between queues in the leader replacement stage, which can expand the search space of solutions and at the same time to maintain population diversity . Finally, we consider using the POX crossover operator in the individual, it is well adapted to the characteristics of the problem can reduce the generation of unreasonable solutions. The computational results show that the neighborhood structure is feasible. Considering the problem of scenic spot vehicle scheduling in practical urban applications, the multivariate migrating birds optimization algorithm based on disjunctive graph neighborhood is more effective than the MILP and other three meta-heuristic algorithms, and the optimal solution is obtained under the same stopping criteria, with an average RPD of 2.16. It has the advantages of fast convergence and good robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云端梦境发布了新的文献求助10
刚刚
1秒前
1秒前
奇怪的茶叶菌完成签到,获得积分10
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Owen应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Dali应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
社会主义接班人完成签到 ,获得积分10
3秒前
ilihe应助科研通管家采纳,获得10
3秒前
Stella应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
GUKGO发布了新的文献求助10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
SYX发布了新的文献求助10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
4秒前
zik应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066