Intelligent Identification and Quantitative Characterization of Pores in Shale SEM Images Based on Pore-Net Deep-Learning Network Model

油页岩 成熟度(心理) 多孔性 表征(材料科学) 扫描电子显微镜 网络模型 地质学 深度学习 人工神经网络 人工智能 页岩气 矿物学 模式识别(心理学) 材料科学 生物系统 计算机科学 岩土工程 纳米技术 复合材料 古生物学 心理学 发展心理学 生物
作者
Xin Tang,Ruiyu He,Biao Wang,Yuerong Zhou,Hong Yin
出处
期刊:Petrophysics [Society of Petrophysicists and Well Log Analysts (SPWLA)]
卷期号:65 (2): 233-245
标识
DOI:10.30632/pjv65n2-2024a6
摘要

Among the various shale reservoir evaluation methods, the scanning electron microscope (SEM) image method is widely used. Its image can intuitively reflect the development stage of a shale reservoir and is often used for the qualitative characterization of shale pores. However, manual image processing is inefficient and cannot quantitatively characterize pores. The semantic segmentation method of deep learning greatly improves the efficiency of image analysis and can calculate the face rate of shale SEM images to achieve quantitative characterization. In this paper, the high-maturity shale of the Longmaxi Formation in the Changning area of Yibin City, Sichuan Province, and the low-maturity shale of Beibu Gulf Basin in China are studied. Based on the Pore-net network model, the intelligent identification and quantitative characterization of pores in shale SEM images are realized. The pore-net model is improved from the U-net deep-learning network model, which improves the ability of the network model to identify pores. The results show that the pore-net model performs better than the U-net model, FCN model, DeepLab V3 + model, and traditional binarization method. The problem of low accuracy of the traditional pore identification method is solved. The porosity of SEM images of high-maturity shale calculated by the pore-net network model is between 12 and 19% deviation from the experimental data. The calculated porosity of the SEM image of the low-maturity shale has a large deviation from the experimental data, which is between 14 and 47%. Compared with the porosity results calculated by other methods, the results calculated by pore-net are closer to the true value, which proves that the porosity calculated by the pore-net network model is reliable. The deep-learning semantic image segmentation method is suitable for pore recognition of shale SEM images. The fully convolutional neural network model is used to train the manually labeled shale SEM images, which can realize the intelligent recognition and quantitative characterization of the pores in the shale SEM images. It provides a certain reference value for the evaluation of shale oil and gas reservoirs and the study of other porous materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路雪珊完成签到,获得积分10
2秒前
Decade完成签到,获得积分10
2秒前
2秒前
hjjjjj1发布了新的文献求助10
2秒前
An发布了新的文献求助10
3秒前
邓阳发布了新的文献求助20
3秒前
faye发布了新的文献求助10
3秒前
共享精神应助lsj采纳,获得30
3秒前
4秒前
务实善若完成签到,获得积分10
4秒前
YN3585完成签到,获得积分10
5秒前
杨佳楠完成签到,获得积分10
5秒前
畅快冬萱完成签到,获得积分20
6秒前
可爱的函函应助sleeping采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
YN3585发布了新的文献求助10
8秒前
高兴的悟空完成签到,获得积分10
9秒前
ding应助S.W.Liao采纳,获得10
9秒前
研友_ZAVod8完成签到,获得积分10
9秒前
lj-TJUT完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
陈陈完成签到,获得积分10
12秒前
善学以致用应助蓝荆采纳,获得10
12秒前
haibing完成签到,获得积分20
12秒前
13秒前
大模型应助清爽身影采纳,获得10
13秒前
Orange应助nail采纳,获得10
13秒前
zzx完成签到,获得积分10
14秒前
Sujikkk发布了新的文献求助10
14秒前
坦率的匪完成签到,获得积分0
14秒前
14秒前
过往关注了科研通微信公众号
14秒前
浮游应助榛子采纳,获得10
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5154634
求助须知:如何正确求助?哪些是违规求助? 4350313
关于积分的说明 13545065
捐赠科研通 4193152
什么是DOI,文献DOI怎么找? 2299764
邀请新用户注册赠送积分活动 1299749
关于科研通互助平台的介绍 1244797