亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Identification and Quantitative Characterization of Pores in Shale SEM Images Based on Pore-Net Deep-Learning Network Model

油页岩 成熟度(心理) 多孔性 表征(材料科学) 扫描电子显微镜 网络模型 地质学 深度学习 人工神经网络 人工智能 页岩气 矿物学 模式识别(心理学) 材料科学 生物系统 计算机科学 岩土工程 纳米技术 复合材料 古生物学 心理学 发展心理学 生物
作者
Xin Tang,Ruiyu He,Biao Wang,Yuerong Zhou,Hong Yin
出处
期刊:Petrophysics [Society of Petrophysicists and Well Log Analysts (SPWLA)]
卷期号:65 (2): 233-245 被引量:1
标识
DOI:10.30632/pjv65n2-2024a6
摘要

Among the various shale reservoir evaluation methods, the scanning electron microscope (SEM) image method is widely used. Its image can intuitively reflect the development stage of a shale reservoir and is often used for the qualitative characterization of shale pores. However, manual image processing is inefficient and cannot quantitatively characterize pores. The semantic segmentation method of deep learning greatly improves the efficiency of image analysis and can calculate the face rate of shale SEM images to achieve quantitative characterization. In this paper, the high-maturity shale of the Longmaxi Formation in the Changning area of Yibin City, Sichuan Province, and the low-maturity shale of Beibu Gulf Basin in China are studied. Based on the Pore-net network model, the intelligent identification and quantitative characterization of pores in shale SEM images are realized. The pore-net model is improved from the U-net deep-learning network model, which improves the ability of the network model to identify pores. The results show that the pore-net model performs better than the U-net model, FCN model, DeepLab V3 + model, and traditional binarization method. The problem of low accuracy of the traditional pore identification method is solved. The porosity of SEM images of high-maturity shale calculated by the pore-net network model is between 12 and 19% deviation from the experimental data. The calculated porosity of the SEM image of the low-maturity shale has a large deviation from the experimental data, which is between 14 and 47%. Compared with the porosity results calculated by other methods, the results calculated by pore-net are closer to the true value, which proves that the porosity calculated by the pore-net network model is reliable. The deep-learning semantic image segmentation method is suitable for pore recognition of shale SEM images. The fully convolutional neural network model is used to train the manually labeled shale SEM images, which can realize the intelligent recognition and quantitative characterization of the pores in the shale SEM images. It provides a certain reference value for the evaluation of shale oil and gas reservoirs and the study of other porous materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
体贴花卷发布了新的文献求助10
8秒前
Ru完成签到 ,获得积分10
12秒前
星辰大海应助体贴花卷采纳,获得10
22秒前
23秒前
chen发布了新的文献求助10
27秒前
归尘应助科研通管家采纳,获得10
35秒前
ceeray23应助科研通管家采纳,获得10
35秒前
思源应助科研通管家采纳,获得10
35秒前
ceeray23应助科研通管家采纳,获得10
35秒前
张张完成签到 ,获得积分10
35秒前
科研通AI6应助chen采纳,获得10
39秒前
领导范儿应助世良采纳,获得10
44秒前
xuanxuan完成签到 ,获得积分10
49秒前
cherish完成签到,获得积分10
50秒前
进击的PhD完成签到 ,获得积分0
51秒前
51秒前
儒雅完成签到 ,获得积分10
51秒前
世良发布了新的文献求助10
55秒前
浮游应助坦率的枕头采纳,获得10
59秒前
坦率的枕头完成签到,获得积分10
1分钟前
肖恩完成签到,获得积分10
1分钟前
MWY完成签到,获得积分10
1分钟前
科研通AI6应助浪里白条采纳,获得10
1分钟前
李爱国应助欣喜的广山采纳,获得10
1分钟前
1分钟前
世良发布了新的文献求助10
1分钟前
科目三应助凌洛尘采纳,获得10
1分钟前
1分钟前
Jessie完成签到 ,获得积分10
1分钟前
马克发布了新的文献求助10
1分钟前
马克完成签到,获得积分20
2分钟前
烟花应助世良采纳,获得10
2分钟前
2分钟前
2分钟前
体贴花卷发布了新的文献求助10
2分钟前
世良发布了新的文献求助10
2分钟前
Jasper应助xiaozhou采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650780
求助须知:如何正确求助?哪些是违规求助? 4781689
关于积分的说明 15052597
捐赠科研通 4809594
什么是DOI,文献DOI怎么找? 2572392
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487373