Intelligent Identification and Quantitative Characterization of Pores in Shale SEM Images Based on Pore-Net Deep-Learning Network Model

油页岩 成熟度(心理) 多孔性 表征(材料科学) 扫描电子显微镜 网络模型 地质学 深度学习 人工神经网络 人工智能 页岩气 矿物学 模式识别(心理学) 材料科学 生物系统 计算机科学 岩土工程 纳米技术 复合材料 古生物学 发展心理学 生物 心理学
作者
Xin Tang,Ruiyu He,Biao Wang,Yuerong Zhou,Hong Yin
出处
期刊:Petrophysics [Society of Petrophysicists and Well Log Analysts (SPWLA)]
卷期号:65 (2): 233-245 被引量:1
标识
DOI:10.30632/pjv65n2-2024a6
摘要

Among the various shale reservoir evaluation methods, the scanning electron microscope (SEM) image method is widely used. Its image can intuitively reflect the development stage of a shale reservoir and is often used for the qualitative characterization of shale pores. However, manual image processing is inefficient and cannot quantitatively characterize pores. The semantic segmentation method of deep learning greatly improves the efficiency of image analysis and can calculate the face rate of shale SEM images to achieve quantitative characterization. In this paper, the high-maturity shale of the Longmaxi Formation in the Changning area of Yibin City, Sichuan Province, and the low-maturity shale of Beibu Gulf Basin in China are studied. Based on the Pore-net network model, the intelligent identification and quantitative characterization of pores in shale SEM images are realized. The pore-net model is improved from the U-net deep-learning network model, which improves the ability of the network model to identify pores. The results show that the pore-net model performs better than the U-net model, FCN model, DeepLab V3 + model, and traditional binarization method. The problem of low accuracy of the traditional pore identification method is solved. The porosity of SEM images of high-maturity shale calculated by the pore-net network model is between 12 and 19% deviation from the experimental data. The calculated porosity of the SEM image of the low-maturity shale has a large deviation from the experimental data, which is between 14 and 47%. Compared with the porosity results calculated by other methods, the results calculated by pore-net are closer to the true value, which proves that the porosity calculated by the pore-net network model is reliable. The deep-learning semantic image segmentation method is suitable for pore recognition of shale SEM images. The fully convolutional neural network model is used to train the manually labeled shale SEM images, which can realize the intelligent recognition and quantitative characterization of the pores in the shale SEM images. It provides a certain reference value for the evaluation of shale oil and gas reservoirs and the study of other porous materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南村孩童完成签到,获得积分10
1秒前
SciGPT应助zz采纳,获得10
1秒前
2秒前
ffj发布了新的文献求助30
3秒前
Lee发布了新的文献求助30
3秒前
keke发布了新的文献求助20
3秒前
Una发布了新的文献求助10
3秒前
4秒前
5秒前
安善涛完成签到,获得积分10
5秒前
5秒前
科研通AI6.1应助米米采纳,获得10
5秒前
6秒前
万能图书馆应助jzk2025采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
安善涛发布了新的文献求助10
8秒前
8秒前
852应助可靠安蕾采纳,获得10
9秒前
9秒前
不安平凡发布了新的文献求助10
9秒前
老温完成签到,获得积分10
9秒前
9秒前
顺心的鲂发布了新的文献求助10
12秒前
14秒前
yuan发布了新的文献求助10
14秒前
15秒前
16秒前
Orange应助阿q采纳,获得30
16秒前
fan完成签到 ,获得积分10
16秒前
Zyl完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
FashionBoy应助sun采纳,获得10
19秒前
Maestro_S应助xjx采纳,获得10
21秒前
万能图书馆应助科研龙采纳,获得10
21秒前
21秒前
美羊羊完成签到,获得积分10
21秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778469
求助须知:如何正确求助?哪些是违规求助? 5641573
关于积分的说明 15449483
捐赠科研通 4910143
什么是DOI,文献DOI怎么找? 2642399
邀请新用户注册赠送积分活动 1590239
关于科研通互助平台的介绍 1544574