Intelligent Identification and Quantitative Characterization of Pores in Shale SEM Images Based on Pore-Net Deep-Learning Network Model

油页岩 成熟度(心理) 多孔性 表征(材料科学) 扫描电子显微镜 网络模型 地质学 深度学习 人工神经网络 人工智能 页岩气 矿物学 模式识别(心理学) 材料科学 生物系统 计算机科学 岩土工程 纳米技术 复合材料 古生物学 心理学 发展心理学 生物
作者
Xin Tang,Ruiyu He,Biao Wang,Yuerong Zhou,Hong Yin
出处
期刊:Petrophysics [Society of Petrophysicists and Well Log Analysts (SPWLA)]
卷期号:65 (2): 233-245
标识
DOI:10.30632/pjv65n2-2024a6
摘要

Among the various shale reservoir evaluation methods, the scanning electron microscope (SEM) image method is widely used. Its image can intuitively reflect the development stage of a shale reservoir and is often used for the qualitative characterization of shale pores. However, manual image processing is inefficient and cannot quantitatively characterize pores. The semantic segmentation method of deep learning greatly improves the efficiency of image analysis and can calculate the face rate of shale SEM images to achieve quantitative characterization. In this paper, the high-maturity shale of the Longmaxi Formation in the Changning area of Yibin City, Sichuan Province, and the low-maturity shale of Beibu Gulf Basin in China are studied. Based on the Pore-net network model, the intelligent identification and quantitative characterization of pores in shale SEM images are realized. The pore-net model is improved from the U-net deep-learning network model, which improves the ability of the network model to identify pores. The results show that the pore-net model performs better than the U-net model, FCN model, DeepLab V3 + model, and traditional binarization method. The problem of low accuracy of the traditional pore identification method is solved. The porosity of SEM images of high-maturity shale calculated by the pore-net network model is between 12 and 19% deviation from the experimental data. The calculated porosity of the SEM image of the low-maturity shale has a large deviation from the experimental data, which is between 14 and 47%. Compared with the porosity results calculated by other methods, the results calculated by pore-net are closer to the true value, which proves that the porosity calculated by the pore-net network model is reliable. The deep-learning semantic image segmentation method is suitable for pore recognition of shale SEM images. The fully convolutional neural network model is used to train the manually labeled shale SEM images, which can realize the intelligent recognition and quantitative characterization of the pores in the shale SEM images. It provides a certain reference value for the evaluation of shale oil and gas reservoirs and the study of other porous materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
英俊的铭应助TAC采纳,获得10
1秒前
1秒前
浮游应助沉默清采纳,获得10
2秒前
畅快黎昕完成签到,获得积分10
4秒前
鱼浅浅完成签到,获得积分10
5秒前
李琼琼完成签到 ,获得积分10
5秒前
6秒前
特独斩完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
老实善愁发布了新的文献求助10
7秒前
8秒前
Ascho完成签到,获得积分10
8秒前
谨慎的小甜瓜完成签到,获得积分20
8秒前
orixero应助幸福的莫英采纳,获得10
9秒前
皮皮完成签到 ,获得积分10
10秒前
上善若水完成签到 ,获得积分10
10秒前
丘比特应助小李采纳,获得10
14秒前
zr想发SCI发布了新的文献求助10
14秒前
16秒前
小杭76应助老实善愁采纳,获得10
17秒前
小陈同学发布了新的文献求助30
17秒前
怡然新之完成签到 ,获得积分10
19秒前
斯文败类应助白粥采纳,获得10
19秒前
19秒前
20秒前
Asheno完成签到,获得积分10
21秒前
木耳完成签到 ,获得积分10
21秒前
呢呢完成签到,获得积分20
22秒前
喜悦的铭发布了新的文献求助10
23秒前
安然完成签到,获得积分10
23秒前
23秒前
酷炫的万天关注了科研通微信公众号
24秒前
全小将完成签到 ,获得积分10
25秒前
逆流沙发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
27秒前
热情的抽屉完成签到,获得积分10
28秒前
30秒前
科目三应助胡锦霞采纳,获得30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425046
求助须知:如何正确求助?哪些是违规求助? 4539189
关于积分的说明 14166098
捐赠科研通 4456315
什么是DOI,文献DOI怎么找? 2444120
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412492