清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Intelligent Identification and Quantitative Characterization of Pores in Shale SEM Images Based on Pore-Net Deep-Learning Network Model

油页岩 成熟度(心理) 多孔性 表征(材料科学) 扫描电子显微镜 网络模型 地质学 深度学习 人工神经网络 人工智能 页岩气 矿物学 模式识别(心理学) 材料科学 生物系统 计算机科学 岩土工程 纳米技术 复合材料 古生物学 心理学 发展心理学 生物
作者
Xin Tang,Ruiyu He,Biao Wang,Yuerong Zhou,Hong Yin
出处
期刊:Petrophysics [Society of Petrophysicists and Well Log Analysts (SPWLA)]
卷期号:65 (2): 233-245
标识
DOI:10.30632/pjv65n2-2024a6
摘要

Among the various shale reservoir evaluation methods, the scanning electron microscope (SEM) image method is widely used. Its image can intuitively reflect the development stage of a shale reservoir and is often used for the qualitative characterization of shale pores. However, manual image processing is inefficient and cannot quantitatively characterize pores. The semantic segmentation method of deep learning greatly improves the efficiency of image analysis and can calculate the face rate of shale SEM images to achieve quantitative characterization. In this paper, the high-maturity shale of the Longmaxi Formation in the Changning area of Yibin City, Sichuan Province, and the low-maturity shale of Beibu Gulf Basin in China are studied. Based on the Pore-net network model, the intelligent identification and quantitative characterization of pores in shale SEM images are realized. The pore-net model is improved from the U-net deep-learning network model, which improves the ability of the network model to identify pores. The results show that the pore-net model performs better than the U-net model, FCN model, DeepLab V3 + model, and traditional binarization method. The problem of low accuracy of the traditional pore identification method is solved. The porosity of SEM images of high-maturity shale calculated by the pore-net network model is between 12 and 19% deviation from the experimental data. The calculated porosity of the SEM image of the low-maturity shale has a large deviation from the experimental data, which is between 14 and 47%. Compared with the porosity results calculated by other methods, the results calculated by pore-net are closer to the true value, which proves that the porosity calculated by the pore-net network model is reliable. The deep-learning semantic image segmentation method is suitable for pore recognition of shale SEM images. The fully convolutional neural network model is used to train the manually labeled shale SEM images, which can realize the intelligent recognition and quantitative characterization of the pores in the shale SEM images. It provides a certain reference value for the evaluation of shale oil and gas reservoirs and the study of other porous materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
9秒前
姚芭蕉完成签到 ,获得积分0
13秒前
32429606完成签到 ,获得积分10
27秒前
xinjiasuki完成签到 ,获得积分10
34秒前
韧迹完成签到 ,获得积分0
35秒前
平常日记本完成签到 ,获得积分10
36秒前
41秒前
闪闪的谷梦完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助10
48秒前
airtermis完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ASL完成签到 ,获得积分10
1分钟前
常有李完成签到,获得积分10
1分钟前
有川洋一完成签到 ,获得积分10
1分钟前
1分钟前
gmc完成签到 ,获得积分10
1分钟前
herpes完成签到 ,获得积分0
1分钟前
汉堡包应助伯赏尔云采纳,获得10
1分钟前
哈基米德应助贝妮戴塔采纳,获得20
1分钟前
拼搏的羊青完成签到 ,获得积分10
1分钟前
天将明完成签到 ,获得积分10
1分钟前
丘比特应助薛言采纳,获得10
1分钟前
Ava应助薛言采纳,获得10
2分钟前
刻苦的新烟完成签到 ,获得积分10
2分钟前
2分钟前
清风完成签到 ,获得积分10
2分钟前
注水萝卜完成签到 ,获得积分10
2分钟前
王波完成签到 ,获得积分10
2分钟前
widesky777完成签到 ,获得积分0
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
个性松完成签到 ,获得积分10
2分钟前
2分钟前
威武灵阳完成签到,获得积分10
3分钟前
natsu401完成签到 ,获得积分10
3分钟前
3分钟前
贝妮戴塔完成签到,获得积分10
3分钟前
彗星入梦完成签到 ,获得积分10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015520
求助须知:如何正确求助?哪些是违规求助? 3555453
关于积分的说明 11318050
捐赠科研通 3288665
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012