Analytical Modeling of Location and Contention Randomness for Node-Assisted WiFi Backscatter Communication

随机性 反向散射(电子邮件) 节点(物理) 计算机科学 计算机网络 电信 无线 物理 统计 数学 声学
作者
Yulei Wang,Qinglin Zhao,Shumin Yao,MengChu Zhou,Li Feng,Peiyun Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 23336-23347
标识
DOI:10.1109/jiot.2024.3384032
摘要

Node-assisted WiFi backscatter communication (NWB) is a promising technology that allows backscatter tags to communicate over long distances and achieve high throughput by using WiFi nodes as relays and enabling concurrent transmissions. However, NWB lacks an accurate theoretical model to evaluate and optimize its network performance, which is challenging to develop due to the location and contention randomness of both WiFi nodes and backscatter tags. Existing backscatter models that only account for one type of randomness are not suitable for NWB. To address this issue, we propose a novel stochastic geometry-based model that captures Location and Contention Randomness as well as the involved dependency and interference (named LoCoR). We use the Matérn hard-core point process and Matérn cluster process to model the repulsive and clustering attributes of the locations of WiFi nodes and backscatter tags, respectively. We also introduce a unified time unit to analyze the randomness and dependency of WiFi and backscatter contentions. Our model factors in various design parameters (e.g., the density and transmission power of tags) and can be used to evaluate their impacts on system throughput. We conduct extensive simulations to validate the accuracy of our model. With our accurate model, one can easily configure the optimal design parameters to maximize system throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
William鉴哲完成签到,获得积分10
1秒前
神奇科研圆完成签到,获得积分10
1秒前
1秒前
biomds完成签到,获得积分10
1秒前
1秒前
2秒前
乐乐应助huifang采纳,获得10
2秒前
范范发布了新的文献求助10
3秒前
倩迷谜完成签到,获得积分0
4秒前
4秒前
酷酷的紫南完成签到 ,获得积分10
5秒前
迷人凡旋完成签到,获得积分20
5秒前
JamesPei应助大李包采纳,获得10
5秒前
5秒前
天涯完成签到 ,获得积分10
6秒前
shr完成签到,获得积分10
6秒前
落后以旋完成签到,获得积分10
6秒前
小二郎应助缚大哥采纳,获得10
6秒前
充电宝应助青木蓝采纳,获得10
7秒前
云中渊发布了新的文献求助10
7秒前
冷静的毛豆完成签到,获得积分10
7秒前
涵Allen完成签到 ,获得积分10
7秒前
思源应助wzxxxx采纳,获得10
7秒前
隐形曼青应助shelly0621采纳,获得10
8秒前
无敌鱼发布了新的文献求助10
8秒前
9秒前
meimei完成签到,获得积分10
9秒前
朴实的薯片完成签到,获得积分10
10秒前
way完成签到,获得积分10
11秒前
脑洞疼应助Chan0501采纳,获得10
12秒前
fancy完成签到 ,获得积分10
12秒前
Maglev发布了新的文献求助10
13秒前
13秒前
含糊的代丝完成签到 ,获得积分10
13秒前
13秒前
14秒前
小九发布了新的文献求助20
14秒前
zhui发布了新的文献求助10
15秒前
通达完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794