Data and knowledge-driven deep multiview fusion network based on diffusion model for hyperspectral image classification

高光谱成像 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 相似性(几何) 样品(材料) 人工神经网络 数据挖掘 图像(数学) 哲学 语言学 化学 色谱法
作者
Junjie Zhang,Feng Zhao,Hanqiang Liu,Jun Yu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123796-123796 被引量:4
标识
DOI:10.1016/j.eswa.2024.123796
摘要

It is a crucial means for humans to perceive geomorphic features and landscape architectures by classifying ground objects in hyperspectral images (HSIs). Currently, the exponential development of neural networks has provided a powerful support for the accurate HSI classification. However, existing neural network-based methods usually rely solely on the data to drive the classification model, lacking attention to valuable land-cover distribution knowledge in HSIs. In view of this, to utilize hyperspectral data and distribution knowledge simultaneously, a data and knowledge-driven deep multiview fusion network based on diffusion model (DKDMN) is proposed in this paper. DKDMN extracts knowledge from unlabeled data in HSIs through a diffusion model-based knowledge learning framework (DMKLF), and combines raw hyperspectral data with the acquired knowledge through a designed deep multiview network architecture (DMNA) to mine complicated land-cover distribution information and reflect sample relationships. First, the proposed DMKLF utilizes the data distribution reconstructed by the diffusion model as a knowledge source for one view to enhance the network cross-sample awareness ability. On the other hand, the original HSI patches are considered a data source for another view, which co-drives DMNA with the unsupervised diffusion knowledge extracted by DMKLF to perform effective feature extraction. Second, taking into account the characteristics of each view and the feature similarity between these two views, a joint loss function specifically for DMNA is suggested to minimize the difference between the model predictions and the real labels. Finally, a multi-backbone integration classification framework (MBICF) is designed by deeply fusing three vision architectures to capture multi-scale spectral features and local–global features, thereby achieving pixel-wise classification effectively. Experimental results on four publicly available HSI datasets demonstrate that the proposed DKDMN achieves competitive classification accuracy compared with other state-of-the-art methods. For instance, the proposed DKDMN achieves an overall accuracy improvement of 1.62% and 2.18% on the Indian Pines and Salinas Valley datasets, respectively, compared to the multiple vision architecture-based hybrid network (MVAHN). The related code will be released at https://github.com/ZJier/DKDMN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻沛萍发布了新的文献求助10
2秒前
mimi发布了新的文献求助10
3秒前
思源应助海德堡采纳,获得10
4秒前
科目三应助shinn采纳,获得30
4秒前
汉堡包应助123采纳,获得10
5秒前
思源应助小何采纳,获得10
6秒前
weidongwu发布了新的文献求助10
6秒前
qweer完成签到,获得积分10
7秒前
7秒前
10秒前
mimi完成签到,获得积分10
11秒前
CipherSage应助qweer采纳,获得10
13秒前
15秒前
迷路岩发布了新的文献求助10
16秒前
16秒前
17秒前
张今天也要做科研呀完成签到,获得积分10
19秒前
缓慢的语蕊完成签到 ,获得积分10
19秒前
裴笑凡发布了新的文献求助10
19秒前
kk完成签到,获得积分10
20秒前
Ammr完成签到 ,获得积分10
21秒前
22秒前
22秒前
23秒前
25秒前
秀丽的芷珍完成签到 ,获得积分10
25秒前
拖拖完成签到,获得积分10
26秒前
李健的小迷弟应助迷路岩采纳,获得10
26秒前
奋斗的雅柔完成签到,获得积分20
26秒前
Awei发布了新的文献求助20
27秒前
UP发布了新的文献求助10
28秒前
28秒前
刘玥言发布了新的文献求助10
29秒前
29秒前
30秒前
bkagyin应助爆爆采纳,获得10
30秒前
wxl完成签到,获得积分10
30秒前
今后应助着急的傲菡采纳,获得10
30秒前
细腻沛萍完成签到,获得积分10
31秒前
田様应助科研通管家采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967156
求助须知:如何正确求助?哪些是违规求助? 3512491
关于积分的说明 11163601
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804468