Data and knowledge-driven deep multiview fusion network based on diffusion model for hyperspectral image classification

高光谱成像 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 相似性(几何) 样品(材料) 人工神经网络 数据挖掘 图像(数学) 语言学 色谱法 哲学 化学
作者
Junjie Zhang,Feng Zhao,Hanqiang Liu,Jun Yu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123796-123796 被引量:4
标识
DOI:10.1016/j.eswa.2024.123796
摘要

It is a crucial means for humans to perceive geomorphic features and landscape architectures by classifying ground objects in hyperspectral images (HSIs). Currently, the exponential development of neural networks has provided a powerful support for the accurate HSI classification. However, existing neural network-based methods usually rely solely on the data to drive the classification model, lacking attention to valuable land-cover distribution knowledge in HSIs. In view of this, to utilize hyperspectral data and distribution knowledge simultaneously, a data and knowledge-driven deep multiview fusion network based on diffusion model (DKDMN) is proposed in this paper. DKDMN extracts knowledge from unlabeled data in HSIs through a diffusion model-based knowledge learning framework (DMKLF), and combines raw hyperspectral data with the acquired knowledge through a designed deep multiview network architecture (DMNA) to mine complicated land-cover distribution information and reflect sample relationships. First, the proposed DMKLF utilizes the data distribution reconstructed by the diffusion model as a knowledge source for one view to enhance the network cross-sample awareness ability. On the other hand, the original HSI patches are considered a data source for another view, which co-drives DMNA with the unsupervised diffusion knowledge extracted by DMKLF to perform effective feature extraction. Second, taking into account the characteristics of each view and the feature similarity between these two views, a joint loss function specifically for DMNA is suggested to minimize the difference between the model predictions and the real labels. Finally, a multi-backbone integration classification framework (MBICF) is designed by deeply fusing three vision architectures to capture multi-scale spectral features and local–global features, thereby achieving pixel-wise classification effectively. Experimental results on four publicly available HSI datasets demonstrate that the proposed DKDMN achieves competitive classification accuracy compared with other state-of-the-art methods. For instance, the proposed DKDMN achieves an overall accuracy improvement of 1.62% and 2.18% on the Indian Pines and Salinas Valley datasets, respectively, compared to the multiple vision architecture-based hybrid network (MVAHN). The related code will be released at https://github.com/ZJier/DKDMN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百里健柏完成签到,获得积分10
1秒前
隐形曼青应助贪玩岱周采纳,获得10
2秒前
2秒前
李山鬼发布了新的文献求助10
2秒前
3秒前
3秒前
科研通AI5应助笑点低的紫采纳,获得10
3秒前
4秒前
无欲无求的打工仔完成签到,获得积分10
4秒前
追逐123完成签到 ,获得积分10
5秒前
abner应助多情口红采纳,获得10
5秒前
5秒前
浮游应助青梧采纳,获得10
5秒前
任婷发布了新的文献求助10
6秒前
121314wld发布了新的文献求助10
6秒前
阳光向秋发布了新的文献求助10
6秒前
6秒前
浮游应助呵呵禾采纳,获得10
6秒前
Akim应助啦啦啦采纳,获得10
7秒前
7秒前
淡定可乐发布了新的文献求助10
7秒前
等待雅寒完成签到,获得积分10
8秒前
Calactic完成签到 ,获得积分10
8秒前
今后应助唠叨的又菡采纳,获得10
8秒前
orixero应助Yvonne采纳,获得10
9秒前
ya完成签到,获得积分10
9秒前
9秒前
梅竹发布了新的文献求助10
9秒前
000发布了新的文献求助10
10秒前
李爱国应助西蓝花战士采纳,获得10
10秒前
527完成签到,获得积分10
10秒前
liang发布了新的文献求助30
10秒前
海光发布了新的文献求助30
11秒前
暖若安阳完成签到,获得积分10
11秒前
求助人完成签到 ,获得积分10
11秒前
11秒前
forg发布了新的文献求助10
11秒前
西瓜发布了新的文献求助10
11秒前
veinard完成签到,获得积分20
11秒前
迷路访旋完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960767
求助须知:如何正确求助?哪些是违规求助? 4221237
关于积分的说明 13146027
捐赠科研通 4004962
什么是DOI,文献DOI怎么找? 2191794
邀请新用户注册赠送积分活动 1205889
关于科研通互助平台的介绍 1116970