Data and knowledge-driven deep multiview fusion network based on diffusion model for hyperspectral image classification

高光谱成像 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 相似性(几何) 样品(材料) 人工神经网络 数据挖掘 图像(数学) 哲学 语言学 化学 色谱法
作者
Junjie Zhang,Feng Zhao,Hanqiang Liu,Jun Yu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123796-123796
标识
DOI:10.1016/j.eswa.2024.123796
摘要

It is a crucial means for humans to perceive geomorphic features and landscape architectures by classifying ground objects in hyperspectral images (HSIs). Currently, the exponential development of neural networks has provided a powerful support for the accurate HSI classification. However, existing neural network-based methods usually rely solely on the data to drive the classification model, lacking attention to valuable land-cover distribution knowledge in HSIs. In view of this, to utilize hyperspectral data and distribution knowledge simultaneously, a data and knowledge-driven deep multiview fusion network based on diffusion model (DKDMN) is proposed in this paper. DKDMN extracts knowledge from unlabeled data in HSIs through a diffusion model-based knowledge learning framework (DMKLF), and combines raw hyperspectral data with the acquired knowledge through a designed deep multiview network architecture (DMNA) to mine complicated land-cover distribution information and reflect sample relationships. First, the proposed DMKLF utilizes the data distribution reconstructed by the diffusion model as a knowledge source for one view to enhance the network cross-sample awareness ability. On the other hand, the original HSI patches are considered a data source for another view, which co-drives DMNA with the unsupervised diffusion knowledge extracted by DMKLF to perform effective feature extraction. Second, taking into account the characteristics of each view and the feature similarity between these two views, a joint loss function specifically for DMNA is suggested to minimize the difference between the model predictions and the real labels. Finally, a multi-backbone integration classification framework (MBICF) is designed by deeply fusing three vision architectures to capture multi-scale spectral features and local–global features, thereby achieving pixel-wise classification effectively. Experimental results on four publicly available HSI datasets demonstrate that the proposed DKDMN achieves competitive classification accuracy compared with other state-of-the-art methods. For instance, the proposed DKDMN achieves an overall accuracy improvement of 1.62% and 2.18% on the Indian Pines and Salinas Valley datasets, respectively, compared to the multiple vision architecture-based hybrid network (MVAHN). The related code will be released at https://github.com/ZJier/DKDMN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心新梅发布了新的文献求助10
刚刚
1秒前
密密麻麻M完成签到,获得积分10
1秒前
onmyway发布了新的文献求助10
1秒前
Humab668发布了新的文献求助30
2秒前
ding应助11采纳,获得10
2秒前
2秒前
jyl完成签到,获得积分10
3秒前
北冥有鱼完成签到,获得积分20
3秒前
xuhang发布了新的文献求助10
4秒前
可乐应助香蕉子骞采纳,获得10
5秒前
6秒前
不安的朋友完成签到,获得积分10
8秒前
科科1007完成签到 ,获得积分10
8秒前
眠眠羊完成签到,获得积分10
9秒前
大个应助曾经二娘采纳,获得10
9秒前
科研通AI2S应助ohahaha采纳,获得10
10秒前
Orange应助aaa采纳,获得10
10秒前
kaiko完成签到,获得积分20
11秒前
善良的远锋完成签到,获得积分10
11秒前
sam发布了新的文献求助10
11秒前
碧蓝碧萱关注了科研通微信公众号
11秒前
11秒前
12秒前
星下梧桐完成签到,获得积分20
12秒前
ffgg12138完成签到,获得积分10
13秒前
深情安青应助赵清采纳,获得10
13秒前
火山完成签到,获得积分10
14秒前
oceanao应助搞怪彩虹采纳,获得10
14秒前
合适春天发布了新的文献求助10
15秒前
深情安青应助zhang005on采纳,获得10
15秒前
璇22发布了新的文献求助10
16秒前
small应助无悔呀采纳,获得10
17秒前
桃桃奶盖完成签到,获得积分10
17秒前
liliwang发布了新的文献求助10
17秒前
nanfeng完成签到 ,获得积分10
18秒前
啊啊啊发布了新的文献求助10
18秒前
zhuzhuxia发布了新的文献求助30
19秒前
Hello应助Sweet Hope采纳,获得10
19秒前
暮霭沉沉应助bamboo采纳,获得10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155576
求助须知:如何正确求助?哪些是违规求助? 2806779
关于积分的说明 7870685
捐赠科研通 2465047
什么是DOI,文献DOI怎么找? 1312118
科研通“疑难数据库(出版商)”最低求助积分说明 629877
版权声明 601892