锑
材料科学
硒化物
太阳能电池
硫系化合物
沉积(地质)
基质(水族馆)
薄膜
蒸发
能量转换效率
光电子学
化学工程
纳米技术
冶金
硒
地质学
古生物学
海洋学
物理
沉积物
工程类
热力学
作者
Ke Li,Junjie Yang,Zhiyuan Cai,Yuehao Gu,Aoxing Liu,Changfei Zhu,Rongfeng Tang,Tao Chen
标识
DOI:10.1002/smtd.202400227
摘要
Abstract Antimony selenide (Sb 2 Se 3 ) consists of 1D (Sb 4 Se 6 ) n ribbons, along which the carriers exhibit high transport efficiency. By adjusting the deposition parameters of vacuum‐deposited methods, such as evaporation temperature, chamber pressure, and vapor concentration, it is possible to grow the (Sb 4 Se 6 ) n ribbons vertically or highly inclined towards the substrate, resulting in films with [ hk 1] orientation. However, the specific mechanisms by which these deposition parameters affect the orientation of thin films require a deeper understanding. Herein, a molecular beam epitaxy technique is developed for the preparation of highly [ hk 1]‐oriented Sb 2 Se 3 films, and the effect of evaporation parameters on the film orientation is investigated. It is found that the evaporation temperature can affect the decomposition degree of Sb 2 Se 3 , which in turn determines the vapor composition and film orientation. Additionally, the decomposition of Sb 2 Se 3 related to evaporation temperature leads to significant changes in the elemental composition of the film, thereby passivating deep‐level defects under Se‐rich conditions. Consequently, the Sb 2 Se 3 films with highly [ hk 1] orientation achieve a power conversion efficiency of 8.42% for the solar cells. This study provides new insights into the control of orientation in antimony‐based chalcogenide films and points out new directions for improving the photovoltaic performance of solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI