亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence–Derived Risk Prediction: A Novel Risk Calculator Using Office and Ambulatory Blood Pressure

计算器 血压 回廊的 动态血压 医学 风险评估 计算机科学 内科学 重症监护医学 计算机安全 操作系统
作者
Pedro Guimarães,Andreas Keller,Michael Böhm,Lucas Lauder,Tobias Fehlmann,Luís M. Ruilope,Ernest Vinyoles,Manuel Gorostidi,J. Segura,Gema Ruiz‐Hurtado,Natalie Staplin,Bryan Williams,Alejandro de la Sierra,Felix Mahfoud
出处
期刊:Hypertension [Lippincott Williams & Wilkins]
标识
DOI:10.1161/hypertensionaha.123.22529
摘要

BACKGROUND: Quantification of total cardiovascular risk is essential for individualizing hypertension treatment. This study aimed to develop and validate a novel, machine-learning–derived model to predict cardiovascular mortality risk using office blood pressure (OBP) and ambulatory blood pressure (ABP). METHODS: The performance of the novel risk score was compared with existing risk scores, and the possibility of predicting ABP phenotypes utilizing clinical variables was assessed. Using data from 59 124 patients enrolled in the Spanish ABP Monitoring registry, machine-learning approaches (logistic regression, gradient-boosted decision trees, and deep neural networks) and stepwise forward feature selection were used. RESULTS: For the prediction of cardiovascular mortality, deep neural networks yielded the highest clinical performance. The novel mortality prediction models using OBP and ABP outperformed other risk scores. The area under the curve achieved by the novel approach, already when using OBP variables, was significantly higher when compared with the area under the curve of the Framingham risk score, Systemic Coronary Risk Estimation 2, and Atherosclerotic Cardiovascular Disease score. However, the prediction of cardiovascular mortality with ABP instead of OBP data significantly increased the area under the curve (0.870 versus 0.865; P =3.61×10 − 28 ), accuracy, and specificity, respectively. The prediction of ABP phenotypes (ie, white-coat, ambulatory, and masked hypertension) using clinical characteristics was limited. CONCLUSIONS: The receiver operating characteristic curves for cardiovascular mortality using ABP and OBP with deep neural network models outperformed all other risk metrics, indicating the potential for improving current risk scores by applying state-of-the-art machine learning approaches. The prediction of cardiovascular mortality using ABP data led to a significant increase in area under the curve and performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助kk采纳,获得30
14秒前
Fling完成签到,获得积分10
15秒前
852应助Aurora采纳,获得10
19秒前
Jasper应助godfrey采纳,获得10
25秒前
遇上就这样吧完成签到,获得积分0
1分钟前
1分钟前
Aurora发布了新的文献求助10
1分钟前
科研通AI5应助DJ采纳,获得10
1分钟前
哇呀呀完成签到 ,获得积分10
1分钟前
1分钟前
头秃科研人完成签到,获得积分10
1分钟前
1分钟前
飞夜完成签到 ,获得积分10
1分钟前
111发布了新的文献求助10
1分钟前
Kevin应助hugeyoung采纳,获得20
1分钟前
ILS完成签到 ,获得积分10
1分钟前
DJ发布了新的文献求助10
1分钟前
ding应助Aurora采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
2分钟前
DJ完成签到,获得积分20
2分钟前
Aurora发布了新的文献求助10
2分钟前
2分钟前
yuuu完成签到 ,获得积分10
2分钟前
乐乱完成签到 ,获得积分10
2分钟前
聪明的灵寒完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
奋斗的宛白完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671211
求助须知:如何正确求助?哪些是违规求助? 3228106
关于积分的说明 9778502
捐赠科研通 2938349
什么是DOI,文献DOI怎么找? 1609885
邀请新用户注册赠送积分活动 760487
科研通“疑难数据库(出版商)”最低求助积分说明 735990