Artificial Intelligence–Derived Risk Prediction: A Novel Risk Calculator Using Office and Ambulatory Blood Pressure

计算器 血压 回廊的 动态血压 医学 风险评估 计算机科学 内科学 重症监护医学 计算机安全 操作系统
作者
Pedro Guimarães,Andreas Keller,Michael Böhm,Lucas Lauder,Tobias Fehlmann,Luís M. Ruilope,Ernest Vinyoles,Manuel Gorostidi,J. Segura,Gema Ruiz‐Hurtado,Natalie Staplin,Bryan Williams,Alejandro de la Sierra,Felix Mahfoud
出处
期刊:Hypertension [Lippincott Williams & Wilkins]
卷期号:82 (1): 46-56 被引量:1
标识
DOI:10.1161/hypertensionaha.123.22529
摘要

Quantification of total cardiovascular risk is essential for individualizing hypertension treatment. This study aimed to develop and validate a novel, machine-learning-derived model to predict cardiovascular mortality risk using office blood pressure (OBP) and ambulatory blood pressure (ABP). The performance of the novel risk score was compared with existing risk scores, and the possibility of predicting ABP phenotypes utilizing clinical variables was assessed. Using data from 59 124 patients enrolled in the Spanish ABP Monitoring registry, machine-learning approaches (logistic regression, gradient-boosted decision trees, and deep neural networks) and stepwise forward feature selection were used. For the prediction of cardiovascular mortality, deep neural networks yielded the highest clinical performance. The novel mortality prediction models using OBP and ABP outperformed other risk scores. The area under the curve achieved by the novel approach, already when using OBP variables, was significantly higher when compared with the area under the curve of the Framingham risk score, Systemic Coronary Risk Estimation 2, and Atherosclerotic Cardiovascular Disease score. However, the prediction of cardiovascular mortality with ABP instead of OBP data significantly increased the area under the curve (0.870 versus 0.865; P=3.61×10-28), accuracy, and specificity, respectively. The prediction of ABP phenotypes (ie, white-coat, ambulatory, and masked hypertension) using clinical characteristics was limited. The receiver operating characteristic curves for cardiovascular mortality using ABP and OBP with deep neural network models outperformed all other risk metrics, indicating the potential for improving current risk scores by applying state-of-the-art machine learning approaches. The prediction of cardiovascular mortality using ABP data led to a significant increase in area under the curve and performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
何hehe完成签到 ,获得积分10
2秒前
2秒前
BJ_whc完成签到,获得积分10
3秒前
月亮邮递员完成签到,获得积分10
4秒前
我啊完成签到 ,获得积分10
4秒前
4秒前
poet泸沽完成签到 ,获得积分10
4秒前
Mayday发布了新的文献求助10
6秒前
月亮不睡我不睡完成签到,获得积分20
9秒前
10秒前
12秒前
13秒前
执笔画流年完成签到,获得积分10
14秒前
天机鲁比发布了新的文献求助10
14秒前
BG完成签到,获得积分10
15秒前
李健应助殿下小王子采纳,获得10
16秒前
17秒前
19秒前
bk2020113458完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助50
20秒前
Jessie发布了新的文献求助10
23秒前
23秒前
Akim应助古月采纳,获得10
23秒前
23秒前
bkagyin应助牛牛采纳,获得10
24秒前
Luo发布了新的文献求助10
24秒前
25秒前
27秒前
xiaozhuzhu完成签到,获得积分10
30秒前
nihaoxjm发布了新的文献求助10
30秒前
亦玉完成签到,获得积分10
31秒前
无聊的南松完成签到,获得积分10
32秒前
33秒前
Orange应助古月采纳,获得10
34秒前
34秒前
悦耳的咖啡豆完成签到,获得积分10
37秒前
dingz完成签到,获得积分10
37秒前
领导范儿应助怡然小蚂蚁采纳,获得10
38秒前
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958225
求助须知:如何正确求助?哪些是违规求助? 3504388
关于积分的说明 11118283
捐赠科研通 3235682
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565