Artificial Intelligence–Derived Risk Prediction: A Novel Risk Calculator Using Office and Ambulatory Blood Pressure

计算器 血压 回廊的 动态血压 医学 风险评估 计算机科学 内科学 重症监护医学 计算机安全 操作系统
作者
Pedro Guimarães,Andreas Keller,Michael Böhm,Lucas Lauder,Tobias Fehlmann,Luís M. Ruilope,Ernest Vinyoles,Manuel Gorostidi,J. Segura,Gema Ruiz‐Hurtado,Natalie Staplin,Bryan Williams,Alejandro de la Sierra,Felix Mahfoud
出处
期刊:Hypertension [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1161/hypertensionaha.123.22529
摘要

BACKGROUND: Quantification of total cardiovascular risk is essential for individualizing hypertension treatment. This study aimed to develop and validate a novel, machine-learning–derived model to predict cardiovascular mortality risk using office blood pressure (OBP) and ambulatory blood pressure (ABP). METHODS: The performance of the novel risk score was compared with existing risk scores, and the possibility of predicting ABP phenotypes utilizing clinical variables was assessed. Using data from 59 124 patients enrolled in the Spanish ABP Monitoring registry, machine-learning approaches (logistic regression, gradient-boosted decision trees, and deep neural networks) and stepwise forward feature selection were used. RESULTS: For the prediction of cardiovascular mortality, deep neural networks yielded the highest clinical performance. The novel mortality prediction models using OBP and ABP outperformed other risk scores. The area under the curve achieved by the novel approach, already when using OBP variables, was significantly higher when compared with the area under the curve of the Framingham risk score, Systemic Coronary Risk Estimation 2, and Atherosclerotic Cardiovascular Disease score. However, the prediction of cardiovascular mortality with ABP instead of OBP data significantly increased the area under the curve (0.870 versus 0.865; P =3.61×10 − 28 ), accuracy, and specificity, respectively. The prediction of ABP phenotypes (ie, white-coat, ambulatory, and masked hypertension) using clinical characteristics was limited. CONCLUSIONS: The receiver operating characteristic curves for cardiovascular mortality using ABP and OBP with deep neural network models outperformed all other risk metrics, indicating the potential for improving current risk scores by applying state-of-the-art machine learning approaches. The prediction of cardiovascular mortality using ABP data led to a significant increase in area under the curve and performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草吃牛完成签到,获得积分20
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
liusaiya应助科研通管家采纳,获得60
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
ShowMaker应助科研通管家采纳,获得20
1秒前
甜甜玫瑰应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
ShowMaker应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得20
2秒前
juanjuan应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
甜甜玫瑰应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
ShowMaker应助科研通管家采纳,获得20
2秒前
3秒前
啥也不是发布了新的文献求助10
3秒前
4秒前
4秒前
Dan发布了新的文献求助10
5秒前
5秒前
酷酷水壶完成签到,获得积分10
6秒前
盒子应助忧心的雯采纳,获得10
7秒前
桐桐应助忧心的雯采纳,获得30
7秒前
JamesPei应助不要太激进采纳,获得10
7秒前
7秒前
8秒前
饱满芷卉完成签到,获得积分10
8秒前
mimi完成签到,获得积分10
8秒前
8秒前
FashionBoy应助66采纳,获得10
9秒前
lsq108完成签到,获得积分10
9秒前
9秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152854
求助须知:如何正确求助?哪些是违规求助? 2804064
关于积分的说明 7856939
捐赠科研通 2461847
什么是DOI,文献DOI怎么找? 1310502
科研通“疑难数据库(出版商)”最低求助积分说明 629279
版权声明 601788