Seg2Tunnel: A hierarchical point cloud dataset and benchmarks for segmentation of segmental tunnel linings

点云 分割 点(几何) 计算机科学 人工智能 地质学 几何学 数学
作者
Wenhan Lin,Brian B. Sheil,Pin Zhang,Boping Zhou,Cheng Wang,Xuansong Xie
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:147: 105735-105735
标识
DOI:10.1016/j.tust.2024.105735
摘要

Point clouds provide a novel and effective alternative to understanding the structural behaviours of segmental tunnel linings. 3D deep learning (DL) has emerged as a promising technology capable of automatically deriving point-wise semantic and instance labels from point clouds. The utilisation of 3D DL in segment segmentation of tunnel point clouds has not been explored and the development of tailored 3D DL networks has been hindered by the absence of specialised datasets and benchmarks. To bridge this gap, this paper introduces a richly annotated hierarchical dataset: 'Seg2Tunnel', acquired from five tunnels and including 1,300 tunnel rings. Using the Seg2Tunnel dataset, the feasibility of applying 3D DL to the segment segmentation is demonstrated for the first time. Experiments are conducted to investigate the influences of training set size, data augmentation strategy, input size, and hyperparameter on the performance of trained 3D DL models and to provide benchmarks and insights for future uses of the Seg2Tunnel dataset. The 3D DL models trained by the Seg2Tunnel dataset outperform currently existing image- and voxel-based DL methods. The Seg2Tunnel dataset and benchmarks are fundamental in shaping the design of 3D DL networks tailored for tunnel point clouds. The study provides a novel paradigm for automatically understanding the tunnel structural elements in the point clouds, paving the way for unmanned construction and intelligent evaluation of segmental tunnel linings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
将个烂就发布了新的文献求助10
1秒前
开朗黑猫完成签到 ,获得积分10
1秒前
1秒前
Jinjin完成签到,获得积分10
2秒前
李健应助Lexcellent采纳,获得10
2秒前
3秒前
4秒前
科研通AI2S应助ss25采纳,获得10
4秒前
Jasper应助马鲛采纳,获得10
5秒前
jasy完成签到,获得积分10
5秒前
5秒前
李健应助田田田田采纳,获得10
5秒前
lxy2002完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
fifteen应助陈晨采纳,获得10
10秒前
10秒前
tao发布了新的文献求助10
10秒前
10秒前
852应助CYM采纳,获得10
10秒前
10秒前
小明发布了新的文献求助10
11秒前
小二郎应助yx采纳,获得10
12秒前
汉堡包应助hehehe采纳,获得10
13秒前
新的开始发布了新的文献求助10
13秒前
lxy2002发布了新的文献求助10
14秒前
小傻瓜发布了新的文献求助10
15秒前
知音发布了新的文献求助10
16秒前
蓁66完成签到,获得积分10
17秒前
落樱关注了科研通微信公众号
19秒前
19秒前
19秒前
jasy发布了新的文献求助10
19秒前
脑洞疼应助CL采纳,获得10
20秒前
20秒前
20秒前
21秒前
enttt完成签到,获得积分10
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3251986
求助须知:如何正确求助?哪些是违规求助? 2894895
关于积分的说明 8283768
捐赠科研通 2563527
什么是DOI,文献DOI怎么找? 1391650
科研通“疑难数据库(出版商)”最低求助积分说明 651925
邀请新用户注册赠送积分活动 628894