Seg2Tunnel: A hierarchical point cloud dataset and benchmarks for segmentation of segmental tunnel linings

点云 分割 点(几何) 计算机科学 人工智能 地质学 几何学 数学
作者
Wenhan Lin,Brian B. Sheil,Pin Zhang,Boping Zhou,Cheng Wang,Xuansong Xie
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:147: 105735-105735
标识
DOI:10.1016/j.tust.2024.105735
摘要

Point clouds provide a novel and effective alternative to understanding the structural behaviours of segmental tunnel linings. 3D deep learning (DL) has emerged as a promising technology capable of automatically deriving point-wise semantic and instance labels from point clouds. The utilisation of 3D DL in segment segmentation of tunnel point clouds has not been explored and the development of tailored 3D DL networks has been hindered by the absence of specialised datasets and benchmarks. To bridge this gap, this paper introduces a richly annotated hierarchical dataset: 'Seg2Tunnel', acquired from five tunnels and including 1,300 tunnel rings. Using the Seg2Tunnel dataset, the feasibility of applying 3D DL to the segment segmentation is demonstrated for the first time. Experiments are conducted to investigate the influences of training set size, data augmentation strategy, input size, and hyperparameter on the performance of trained 3D DL models and to provide benchmarks and insights for future uses of the Seg2Tunnel dataset. The 3D DL models trained by the Seg2Tunnel dataset outperform currently existing image- and voxel-based DL methods. The Seg2Tunnel dataset and benchmarks are fundamental in shaping the design of 3D DL networks tailored for tunnel point clouds. The study provides a novel paradigm for automatically understanding the tunnel structural elements in the point clouds, paving the way for unmanned construction and intelligent evaluation of segmental tunnel linings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助惠惠采纳,获得10
1秒前
1秒前
Meowly完成签到,获得积分10
1秒前
2秒前
2秒前
陶醉觅夏发布了新的文献求助10
2秒前
pu完成签到,获得积分10
2秒前
小灵通完成签到,获得积分10
2秒前
给我找发布了新的文献求助10
2秒前
科研通AI2S应助LIn采纳,获得10
3秒前
gaga完成签到,获得积分10
3秒前
_Charmo完成签到,获得积分10
3秒前
Slemon完成签到,获得积分10
3秒前
谦谦姜完成签到,获得积分10
5秒前
6秒前
JINGZHANG发布了新的文献求助10
6秒前
6秒前
归海天与应助糊弄学专家采纳,获得10
6秒前
风中的青完成签到,获得积分10
7秒前
7秒前
7秒前
duxinyue关注了科研通微信公众号
8秒前
超级宇宙二踢脚关注了科研通微信公众号
8秒前
9秒前
9秒前
10秒前
务实盼海发布了新的文献求助10
10秒前
徐徐徐徐发布了新的文献求助10
11秒前
星晴遇见花海完成签到,获得积分10
11秒前
乐乐应助Rrr采纳,获得10
12秒前
难过鸿涛应助srt采纳,获得10
13秒前
14秒前
卡卡发布了新的文献求助10
14秒前
14秒前
16秒前
Jasper应助刘芸芸采纳,获得10
17秒前
m彬m彬完成签到 ,获得积分10
17秒前
18秒前
自信鑫鹏完成签到,获得积分10
18秒前
HYH完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794