Seg2Tunnel: A hierarchical point cloud dataset and benchmarks for segmentation of segmental tunnel linings

点云 分割 超参数 点(几何) 计算机科学 人工智能 桥(图论) 机器学习 数据挖掘 几何学 数学 医学 内科学
作者
Wei Lin,Brian Sheil,Pin Zhang,Biao Zhou,Cheng Wang,Xiongyao Xie
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:147: 105735-105735 被引量:26
标识
DOI:10.1016/j.tust.2024.105735
摘要

Point clouds provide a novel and effective alternative to understanding the structural behaviours of segmental tunnel linings. 3D deep learning (DL) has emerged as a promising technology capable of automatically deriving point-wise semantic and instance labels from point clouds. The utilisation of 3D DL in segment segmentation of tunnel point clouds has not been explored and the development of tailored 3D DL networks has been hindered by the absence of specialised datasets and benchmarks. To bridge this gap, this paper introduces a richly annotated hierarchical dataset: 'Seg2Tunnel', acquired from five tunnels and including 1,300 tunnel rings. Using the Seg2Tunnel dataset, the feasibility of applying 3D DL to the segment segmentation is demonstrated for the first time. Experiments are conducted to investigate the influences of training set size, data augmentation strategy, input size, and hyperparameter on the performance of trained 3D DL models and to provide benchmarks and insights for future uses of the Seg2Tunnel dataset. The 3D DL models trained by the Seg2Tunnel dataset outperform currently existing image- and voxel-based DL methods. The Seg2Tunnel dataset and benchmarks are fundamental in shaping the design of 3D DL networks tailored for tunnel point clouds. The study provides a novel paradigm for automatically understanding the tunnel structural elements in the point clouds, paving the way for unmanned construction and intelligent evaluation of segmental tunnel linings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zeng发布了新的文献求助10
刚刚
wenxiaonuan完成签到 ,获得积分10
刚刚
华仔应助苗烨霖采纳,获得10
1秒前
1秒前
2秒前
3秒前
3秒前
4秒前
深情安青应助cxt采纳,获得10
4秒前
老阎应助DaFei采纳,获得30
4秒前
wjp发布了新的文献求助10
5秒前
6秒前
Yipou发布了新的文献求助10
6秒前
thynkz完成签到,获得积分10
7秒前
冷艳方盒发布了新的文献求助10
7秒前
8秒前
kkk完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
执着易绿发布了新的文献求助10
8秒前
9秒前
完美世界应助张一二二二采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
在水一方应助努力的蜗牛采纳,获得10
10秒前
搜集达人应助nnmm11采纳,获得10
10秒前
10秒前
科研通AI2S应助Chnp采纳,获得10
10秒前
体贴半仙完成签到,获得积分20
11秒前
11秒前
11秒前
11秒前
灵巧的沛山完成签到,获得积分10
12秒前
哒哒猪完成签到,获得积分10
12秒前
酷波er应助他方世界采纳,获得10
13秒前
13秒前
zn315315完成签到,获得积分10
13秒前
弓长发布了新的文献求助10
13秒前
雷xy发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513178
求助须知:如何正确求助?哪些是违规求助? 4607547
关于积分的说明 14505663
捐赠科研通 4543090
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471340
关于科研通互助平台的介绍 1443362