A multi-granularity hierarchical network for long- and short-term forecasting on multivariate time series data

粒度 多元统计 期限(时间) 系列(地层学) 计算机科学 时间序列 数据挖掘 序列(生物学) 算法 人工智能 机器学习 生物 遗传学 古生物学 物理 量子力学 操作系统
作者
Hong Yu,Z Wang,Yongfang Xie,Guoyin Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:157: 111537-111537 被引量:2
标识
DOI:10.1016/j.asoc.2024.111537
摘要

Multivariate time series forecasting is a significant research problem in many fields such as economics, finance and transportation, where simultaneous long- and short-term forecasting is required. However, current techniques are typically limited to a single short-term or a long-term forecast. To address the limitation, a novel multi-granularity hierarchical network, GNet-LS, is proposed for long- and short-term forecasting on multivariate time series data, which takes into account the separate role of internal correlation and external relationship. First, the original time series sequence is divided into multiple granular sequences based on downsampling, to reduce error accumulation caused by long-term prediction. In order to discover the external relationships between variables, the CNN module slides over the sequence of variables. The global CNN and local CNN are built to implement periodic and nonperiodic extraction, respectively. Next, a self-attention module is used to model dependencies between the output of local CNN and global CNN. The LSTM networks and attention mechanisms are used to mine internal correlation of the target variable on time series. Then, multiple granular external relationships and internal correlation are obtained in parallel. Finally, external relationships and internal correlation are fused together by splicing and overlay to obtain both long-term and short-term forecasts. The experimental results demonstrate that the proposed GNet-LS outperforms a bunch of compared methods in terms of RSE, CORR, MAE and RMSE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫叶完成签到,获得积分0
刚刚
任伟超发布了新的文献求助10
刚刚
Chen给Chen的求助进行了留言
1秒前
1秒前
cdercder应助研友_Zr5Dpn采纳,获得30
1秒前
Singularity应助muyu采纳,获得10
2秒前
2秒前
3秒前
纠纠完成签到,获得积分10
3秒前
4秒前
4秒前
秋吉儿完成签到,获得积分20
4秒前
友好的蝉发布了新的文献求助30
5秒前
兔子先生完成签到,获得积分10
6秒前
6秒前
7秒前
秋吉儿发布了新的文献求助10
7秒前
ding应助zwk采纳,获得200
7秒前
wuzhizhiya完成签到,获得积分10
8秒前
领导范儿应助js110采纳,获得10
8秒前
434d7n完成签到,获得积分10
8秒前
8秒前
9秒前
2041完成签到,获得积分10
9秒前
一_发布了新的文献求助20
9秒前
LynSharonRose完成签到,获得积分20
10秒前
Ir发布了新的文献求助30
10秒前
HappyStarCat发布了新的文献求助10
11秒前
杠赛来完成签到,获得积分10
11秒前
dony发布了新的文献求助10
12秒前
lantywan发布了新的文献求助10
12秒前
WPP完成签到 ,获得积分10
12秒前
2以李完成签到,获得积分10
12秒前
畅快城完成签到 ,获得积分10
13秒前
13秒前
今后应助克里斯就是逊啦采纳,获得10
13秒前
dagongren完成签到,获得积分10
14秒前
友好的蝉完成签到,获得积分20
15秒前
彭于彦祖应助hu采纳,获得20
15秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668189
求助须知:如何正确求助?哪些是违规求助? 3226562
关于积分的说明 9770261
捐赠科研通 2936503
什么是DOI,文献DOI怎么找? 1608620
邀请新用户注册赠送积分活动 759734
科研通“疑难数据库(出版商)”最低求助积分说明 735521