亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Incremental value of automatically segmented perirenal adipose tissue for pathological grading of clear cell renal cell carcinoma: a multicenter cohort study

分级(工程) 病态的 肾细胞癌 医学 肾脂肪囊 人工智能 特征选择 分割 病理 支持向量机 肾透明细胞癌 放射科 内科学 计算机科学 土木工程 工程类
作者
Shichao Li,Ziling Zhou,Mengmeng Gao,Zhouyan Liao,Kangwen He,Weinuo Qu,Jiali Li,Ihab R. Kamel,Qian Chu,Qingpeng Zhang,Zhen Li
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000001358
摘要

Objectives: Accurate preoperative prediction of the pathological grade of clear cell renal cell carcinoma (ccRCC) is crucial for optimal treatment planning and patient outcomes. This study aims to develop and validate a deep-learning (DL) algorithm to automatically segment renal tumours, kidneys, and perirenal adipose tissue (PRAT) from computed tomography (CT) images and extract radiomics features to predict the pathological grade of ccRCC. Methods: In this cross-ethnic retrospective study, a total of 614 patients were divided into a training set (383 patients from the local hospital), an internal validation set (88 patients from the local hospital), and an external validation set (143 patients from the public dataset). A two-dimensional TransUNet-based DL model combined with the train-while-annotation method was trained for automatic volumetric segmentation of renal tumours, kidneys, and visceral adipose tissue (VAT) on images from two groups of datasets. PRAT was extracted using a dilation algorithm by calculating voxels of VAT surrounding the kidneys. Radiomics features were subsequently extracted from three regions of interest of CT images, adopting multiple filtering strategies. The least absolute shrinkage and selection operator (LASSO) regression was used for feature selection, and the support vector machine (SVM) for developing the pathological grading model. Ensemble learning was used for imbalanced data classification. Performance evaluation included the Dice coefficient for segmentation and metrics such as accuracy and area under curve (AUC) for classification. The WHO/International Society of Urological Pathology (ISUP) grading models were finally interpreted and visualized using the SHapley Additive exPlanations (SHAP) method. Results: For automatic segmentation, the mean Dice coefficient achieved 0.836 for renal tumours and 0.967 for VAT on the internal validation dataset. For WHO/ISUP grading, a model built with features of PRAT achieved a moderate AUC of 0.711 (95% CI, 0.604–0.802) in the internal validation set, coupled with a sensitivity of 0.400 and a specificity of 0.781. While model built with combination features of the renal tumour, kidney, and PRAT showed an AUC of 0.814 (95% CI, 0.717–0.889) in the internal validation set, with a sensitivity of 0.800 and a specificity of 0.753, significantly higher than the model built with features solely from tumour lesion (0.760; 95% CI, 0.657–0.845), with a sensitivity of 0.533 and a specificity of 0.767. Conclusion: Automated segmentation of kidneys and visceral adipose tissue (VAT) through TransUNet combined with a conventional image morphology processing algorithm offers a standardized approach to extract PRAT with high reproducibility. The radiomics features of PRAT and tumour lesions, along with machine learning, accurately predict the pathological grade of ccRCC and reveal the incremental significance of PRAT in this prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助weining采纳,获得10
6秒前
14秒前
hyhyhyhy发布了新的文献求助10
15秒前
weining发布了新的文献求助10
20秒前
楠茸完成签到 ,获得积分10
29秒前
47秒前
48秒前
泡面小猪发布了新的文献求助10
53秒前
www发布了新的文献求助10
58秒前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
www完成签到,获得积分20
1分钟前
fendy完成签到,获得积分0
1分钟前
打打应助科研通管家采纳,获得30
1分钟前
1分钟前
Leo完成签到 ,获得积分10
1分钟前
明理囧完成签到 ,获得积分10
2分钟前
sirius应助Ni采纳,获得10
2分钟前
桐桐应助hyhyhyhy采纳,获得10
2分钟前
小小猪完成签到,获得积分10
2分钟前
KK完成签到,获得积分10
2分钟前
2分钟前
2分钟前
hyhyhyhy发布了新的文献求助10
2分钟前
小枣完成签到 ,获得积分10
2分钟前
dilli完成签到 ,获得积分10
2分钟前
2分钟前
医路通行发布了新的文献求助20
3分钟前
3分钟前
3分钟前
隐形问萍发布了新的文献求助10
3分钟前
Zhang完成签到,获得积分20
3分钟前
灵活又幸福的胖完成签到,获得积分10
3分钟前
葡紫明完成签到 ,获得积分10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
与共完成签到 ,获得积分10
3分钟前
子月之路完成签到,获得积分10
3分钟前
wyy完成签到 ,获得积分10
4分钟前
henryhc_完成签到,获得积分10
4分钟前
antarctic_2022完成签到,获得积分10
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784091
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299627
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989