Multi-vacancy synergistic effect in a NiSe0.4S1.6/ZnO heterostructure for promoting photocatalytic hydrogen production

光催化 制氢 X射线光电子能谱 材料科学 异质结 催化作用 氧气 空位缺陷 分解水 兴奋剂 硫族元素 肖特基势垒 无机化学 光化学 化学 化学工程 光电子学 结晶学 生物化学 有机化学 工程类 二极管
作者
Haizhen Liu,Rongbo Suo,Wenfeng Li,Lu Luo,Hui Yang,Lei Chen,Can‐Zhong Lu
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:346: 127439-127439 被引量:5
标识
DOI:10.1016/j.seppur.2024.127439
摘要

Defect engineering is one of the methods to improve catalytic activity of photocatalysts, but there are few reports on multi-vacancy systems. In this paper, S doping NiSe2 (NiSe0.4S1.6, NSS) was synthesized and further the NSS/xZnO heterostructures containing Ni, Se and O vacancies were constructed. The hydrogen and active oxygen ions are in situ generated at oxygen vacancy (VO) in ZnO, which greatly reduce the recombination of photocarriers, and the generated active oxygen ions and sacrificial agent anions (S2−, SO32−) involve in the regeneration of oxygen vacancy, which may be one of the reasons for the high activity and stability of the composite catalysts. The polarization electric field is formed by regulating the selenium and nickel double vacancy (VSe, VNi) generated by sulfur doping NiSe2, which further improves the charge separation leading to the promotion of photocatalytic hydrogen production. The synergistic effect of the three types of vacancies and the redox properties of the composite catalyst lead to a high H2 production rate of 17.04 mmol·g−1·h−1, 54 and 76 times higher than NSS and ZnO, and a high apparent quantum yield of 15.30 % at 400 nm. The hydrogen production mechanism was explored by EPR, Mott-Schottky, VB-XPS, in suit XPS, DFT, etc. This work proves that the combination of transition metal oxides with rich oxygen defects and metal chalcogenides with metal and chalcogen di-vacancies containing local polarized electric fields is an effective strategy to design high active photocatalyts for water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽的冰旋完成签到 ,获得积分10
2秒前
深情安青应助孤独靖柏采纳,获得10
3秒前
sss发布了新的文献求助10
5秒前
充电宝应助mashu采纳,获得10
5秒前
7秒前
7秒前
hjookhghhbb完成签到,获得积分10
7秒前
酷波er应助chenzh86采纳,获得10
8秒前
四海完成签到,获得积分20
10秒前
freedom313514完成签到,获得积分20
11秒前
研友_Z6WNm8关注了科研通微信公众号
11秒前
Stvbborn完成签到 ,获得积分10
11秒前
11秒前
单薄惜文发布了新的文献求助10
12秒前
13秒前
14秒前
pure123完成签到 ,获得积分10
14秒前
天真之桃完成签到,获得积分10
15秒前
15秒前
huy完成签到 ,获得积分10
16秒前
18秒前
韭菜盒子发布了新的文献求助10
18秒前
孤独靖柏发布了新的文献求助10
18秒前
nailuo发布了新的文献求助30
20秒前
20秒前
21秒前
传奇3应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
8R60d8应助科研通管家采纳,获得10
22秒前
8R60d8应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
zanilia应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
8R60d8应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314016
求助须知:如何正确求助?哪些是违规求助? 2946405
关于积分的说明 8529984
捐赠科研通 2622049
什么是DOI,文献DOI怎么找? 1434315
科研通“疑难数据库(出版商)”最低求助积分说明 665201
邀请新用户注册赠送积分活动 650792