Porous organic polymers

聚合物 多孔性 化学工程 有机聚合物 材料科学 高分子科学 化学 有机化学 工程类
作者
Bao‐Hang Han
出处
期刊:Journal of polymer science [Wiley]
卷期号:62 (8): 1491-1492 被引量:4
标识
DOI:10.1002/pol.20240193
摘要

Porous organic polymers (POPs) are emerging porous materials, which have developed very quickly and drawn more and more attention. The new reactions and optimized reaction conditions resulted in the formation of ordered porous structures, more variety of applications, and more research groups contributing to this promising research field. It is the right time to have a special issue on POPs. I am glad to be the guest editor of this special issue in Journal of Polymer Science. There are 20 contributions in this issue, including four reviews and 16 research articles, ranging from hyper-crosslinked polymers (HCPs), CMPs, to COFs, and spanning from molecular capture and sensing to catalysis and energy storage. Owing to the microporosity and functional moieties inside the pores, POPs show promising capture performance of various ions/molecules. Shi et al. (pol.20230469) comprehensively summarized recent researches on the post-synthetic approaches and CO2 capture performances of amine-functionalized POPs. The structure–performance relationships, i.e. the impact of the amine type and density on the CO2 capture capacity, CO2/N2 selectivity, heat of adsorption, sorption kinetics, and recyclability, will help develop the practically promising adsorbents for CO2 especially with low partition pressures. Three research articles by Fu et al. (pol.20230269), Zhao et al. (pol.20230244), and Shi et al. (pol.20230258) prepared sulfhydryl-functionalized HCPs, POSS-based HCPs, and three-component covalent organic polymers (COPs), and investigated their capture behaviors of metal ions (Pd2+ and Ag+), neonicotinoid insecticides (imidacloprid, acetamidine, and thiamethoxam) and dyes (Congo red and Rhodamine B), and antibiotic (ciprofloxacin), respectively. Due to their conjugation and porosity, POPs display excellent sensing ability to different molecules. Liu et al. (pol.20220683) reviewed the progresses of COFs as analytic platforms with high specific surface area, great stability, and adjustable pore size. The structure adjustability and ease in functionalization of COFs endow them promising performance in electrochemical, photoelectrochemical, and colorimetric sensing of biomolecules, antibacterial drugs, and organic poisons, inorganic metal cations, drugs, pesticides, and biomarkers. In three research articles, Li et al. (pol.20230137), Chen et al. (pol.20220662), and Liu et al. (pol.20230150) reported the preparation of triphenylamine- and triazine-based conjugated microporous polymers, mesoporous polydopamine nanofilms, and imine-linked COFs with ester groups, and their sensing of o-nitrophenol, formaldehyde, and hydrazine, respectively. In another review paper, Liao et al. (pol.20230270) highlighted the latest advances of HCPs synthesized through classical synthesis approaches and morphological assembly methods for biological applications, ranging from drug delivery, antimicrobial, bioimaging, and biosensing. POPs incorporated various catalytic sites in the porous structures, and thus show strong catalytic properties. Huang et al. (pol.20230335) prepared polyhedral oligomeric silsesquioxane (POSS) and phosphonium-based ionic porous hypercrosslinked polymers, which can convert CO2 into highly value-added cyclic carbonates through heterogeneous catalytic addition reaction. Liu et al. (pol.20220638) prepared crown-ether-functionalized POPs (CE-POPs) through the Schiff-base condensation reaction and employed potassium-ion-bound POPs to synergistically catalyze the cycloaddition reaction of CO2 with epoxides to afford cyclic carbonates under mild and solvent-free conditions. In another two works, Liu et al. (pol.20230485) prepared porous C2N polymers, and Guo et al. (pol.20230263) prepared azo-bridged hydroxyl-rich pillar[5]arene-based porous organic polymers. These POPs show good performance in CO2 conversion to cyclic carbonates. Zhou et al. (pol.20230164) explored the synthesis of imine-linked and vinylene-linked COFs (different solvents: o-dichlorobenzene, 1,4-dioxane). The obtained COFs show different crystallinity and porosity from different solvents, and display photocatalytic performances in asymmetric α-alkylation of aldehydes. Furthermore, in the contribution by Zheng et al. (pol.20230362), through self-templated crystallization, hollowed covalent organic framework particles were obtained with tailored shell thickness and diameters and high crystallinity, and employed to support ethylene-oligomerization catalysts to improve the catalytic activity and selectivity to longer-chain α-olefins. POPs also contribute much to application in energy field. In three research articles, Tao et al. (pol.20220601) prepared microporous polycarbazole through ionothermal approach, Ejaz et al. (pol.20230174) prepared tetraphenylpyrazine-cored HCPs, Xu et al. (pol.20230256) hexaazatriphenyl-based POPs, and they employed these POPs in supercapacitors, which exhibit high specific capacitance. In another paper, Wang et al. (pol.20230759) extended π-conjugated hypercrosslinked polymers via Friedel–Crafts reaction and subsequent intramolecular Scholl-coupling reaction, and applied in LIBs. Last but not least, Zhou et al. (pol.20230273) summarized the progresses in COP-based thin films as memory devices. On the basis of synthesis and characterization of COP-thin films, they focus on the electronic properties and memory performances of 2D imine polymer-based memristors, 2D donor–acceptor COF-based memristors, and other 2D COF-based memristors. These contributions demonstrate the richness in the synthesis methodology, functionalization approach, and expanding application fields, however, which can reflect partial development of POPs. The POPs community will and wish to witness the more and more rapid evolution in the future. I would like to sincerely appreciate all the contributing authors for their work and time and gratefully thank the editors of J. Polym. Sci.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木齐Jay完成签到,获得积分10
1秒前
guibuzi发布了新的文献求助30
1秒前
CH_LT发布了新的文献求助10
2秒前
晚来客应助Skywalker采纳,获得20
2秒前
无限一凤完成签到 ,获得积分10
2秒前
zhoushu完成签到,获得积分10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助20
3秒前
LiuYing发布了新的文献求助10
4秒前
xiaoxioayixi完成签到,获得积分10
6秒前
smin发布了新的文献求助10
7秒前
8秒前
如烈火如止水完成签到,获得积分10
9秒前
义气的面包完成签到,获得积分10
9秒前
xtt完成签到,获得积分20
9秒前
xiaoxioayixi发布了新的文献求助10
10秒前
勤恳的语蝶完成签到 ,获得积分10
10秒前
黄姗完成签到 ,获得积分10
11秒前
pokikiii完成签到 ,获得积分10
12秒前
12秒前
13秒前
Zachary完成签到 ,获得积分10
14秒前
14秒前
黄黄黄发布了新的文献求助10
14秒前
15秒前
ljw发布了新的文献求助10
15秒前
xiaoka驳回了Jannie应助
15秒前
LiuYing完成签到,获得积分20
16秒前
looper完成签到,获得积分10
16秒前
16秒前
陈麦子完成签到 ,获得积分10
16秒前
16秒前
淡淡向卉完成签到,获得积分10
17秒前
Pendulium发布了新的文献求助10
18秒前
傅三毒完成签到 ,获得积分10
18秒前
潇洒的若烟完成签到,获得积分10
18秒前
aaa发布了新的文献求助10
19秒前
桐桐应助WANGJD采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601793
求助须知:如何正确求助?哪些是违规求助? 4011315
关于积分的说明 12418979
捐赠科研通 3691357
什么是DOI,文献DOI怎么找? 2035038
邀请新用户注册赠送积分活动 1068322
科研通“疑难数据库(出版商)”最低求助积分说明 952852