PanoGlassNet: Glass Detection With Panoramic RGB and Intensity Images

RGB颜色模型 计算机视觉 人工智能 强度(物理) 计算机科学 计算机图形学(图像) 光学 物理
作者
Qingling Chang,Huanhao Liao,Xiaofei Meng,Shiting Xu,Yan Cui
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15
标识
DOI:10.1109/tim.2024.3390163
摘要

Glass detection is an important and challenging task for many vision systems, such as 3D reconstruction, autonomous driving, and depth estimation. However, to the best of our knowledge, almost all existing glass detection methods based on deep learning are trained on perspective images that contain very few transparent glasses very close to the camera. This is not suitable for some tasks that require context relations, wide field of view (FOV), and simultaneous detection of multiple objects at a certain distance, such as 3D reconstruction, autonomous driving, and pedestrian trajectory prediction. To tackle this problem, we build a panoramic dataset for glass detection called PanoGlass, which contains panoramic images and intensity images, the panoramic images is manually labeled and it provides a field of view four times larger than a perspective image and contains more transparent glasses. Furthermore,based on the PanoGlass dataset, we propose a glass detection method named PanoGlassNet, which captures the wide FOV and twisted boundary of panoramic images by using our novel module large field deformable contextual features (LDCF). The module consists of four branches with different kernel sizes and deformable convolutions. Through extensive experiments, we demonstrate that PanoGlassNet not only achieves 86.14, 0.0069, and 0.9255 of IoU, MAE, and F-score on PanoGlass, respectively, but also achieves 94.10, 0.029, and 0.9690 of IoU, MAE, and F-score on RGBT. Besides, PanoGlassNet is comparable on some of the glass detection datasets and SOD-D datasets. Code and dataset are available at https://github.com/AnyaTracy/PanoGlass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂的小夏完成签到 ,获得积分10
1秒前
1秒前
1秒前
3秒前
4秒前
852应助轻松的忆彤采纳,获得10
4秒前
星辰大海应助天行马采纳,获得10
5秒前
美好斓发布了新的文献求助10
6秒前
天真的秋翠完成签到,获得积分10
7秒前
笑点低怀薇完成签到 ,获得积分10
7秒前
皮皮虾发布了新的文献求助10
8秒前
不懈奋进应助EZAIJ采纳,获得30
8秒前
9秒前
10秒前
小马甲应助yly123采纳,获得10
11秒前
11秒前
11秒前
舒适映寒完成签到,获得积分10
13秒前
张家源发布了新的文献求助10
14秒前
叫滚滚发布了新的文献求助10
16秒前
lunjianchi发布了新的文献求助10
16秒前
充电宝应助风华正茂采纳,获得10
16秒前
完美世界应助boyue采纳,获得10
19秒前
科目三应助冷静的奇迹采纳,获得10
20秒前
李健应助胡图图采纳,获得10
21秒前
22秒前
852应助反义词采纳,获得10
23秒前
24秒前
24秒前
666发布了新的文献求助10
25秒前
唐唐发布了新的文献求助10
25秒前
26秒前
蓦然回首完成签到,获得积分10
28秒前
思源应助123采纳,获得10
28秒前
星辰大海应助张家源采纳,获得10
28秒前
28秒前
29秒前
Liixy发布了新的文献求助10
29秒前
儒雅HR发布了新的文献求助10
30秒前
飘逸锦程完成签到 ,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517