PanoGlassNet: Glass Detection With Panoramic RGB and Intensity Images

RGB颜色模型 计算机视觉 人工智能 强度(物理) 计算机科学 计算机图形学(图像) 光学 物理
作者
Qingling Chang,Huanhao Liao,Xiaofei Meng,Shiting Xu,Yan Cui
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15
标识
DOI:10.1109/tim.2024.3390163
摘要

Glass detection is an important and challenging task for many vision systems, such as 3D reconstruction, autonomous driving, and depth estimation. However, to the best of our knowledge, almost all existing glass detection methods based on deep learning are trained on perspective images that contain very few transparent glasses very close to the camera. This is not suitable for some tasks that require context relations, wide field of view (FOV), and simultaneous detection of multiple objects at a certain distance, such as 3D reconstruction, autonomous driving, and pedestrian trajectory prediction. To tackle this problem, we build a panoramic dataset for glass detection called PanoGlass, which contains panoramic images and intensity images, the panoramic images is manually labeled and it provides a field of view four times larger than a perspective image and contains more transparent glasses. Furthermore,based on the PanoGlass dataset, we propose a glass detection method named PanoGlassNet, which captures the wide FOV and twisted boundary of panoramic images by using our novel module large field deformable contextual features (LDCF). The module consists of four branches with different kernel sizes and deformable convolutions. Through extensive experiments, we demonstrate that PanoGlassNet not only achieves 86.14, 0.0069, and 0.9255 of IoU, MAE, and F-score on PanoGlass, respectively, but also achieves 94.10, 0.029, and 0.9690 of IoU, MAE, and F-score on RGBT. Besides, PanoGlassNet is comparable on some of the glass detection datasets and SOD-D datasets. Code and dataset are available at https://github.com/AnyaTracy/PanoGlass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2113发布了新的文献求助10
1秒前
2秒前
张超完成签到,获得积分10
2秒前
连长完成签到,获得积分10
3秒前
5秒前
5秒前
小孙发布了新的文献求助10
6秒前
深情不弱发布了新的文献求助10
6秒前
要死要活着完成签到,获得积分20
7秒前
我是老大应助小黄采纳,获得10
8秒前
猪琳发布了新的文献求助10
9秒前
天真如松发布了新的文献求助10
9秒前
顾矜应助holmes采纳,获得10
10秒前
MMMV完成签到,获得积分10
10秒前
12秒前
李爱国应助2113采纳,获得10
12秒前
13秒前
开放沛柔完成签到,获得积分10
13秒前
开朗黑猫完成签到,获得积分10
14秒前
Owen应助剪影改采纳,获得10
15秒前
曾经的冰淇淋完成签到,获得积分10
16秒前
lmfffff发布了新的文献求助10
17秒前
17秒前
Jasper应助天真如松采纳,获得10
18秒前
有机发布了新的文献求助10
18秒前
wangsiyuan完成签到 ,获得积分10
19秒前
19秒前
氟马西尼发布了新的文献求助10
19秒前
21秒前
英姑应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
22秒前
ceeray23应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
22秒前
22秒前
Orange应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
大模型应助科研通管家采纳,获得10
22秒前
小二郎应助生动项链采纳,获得10
23秒前
科研怪完成签到 ,获得积分10
24秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462603
求助须知:如何正确求助?哪些是违规求助? 3056160
关于积分的说明 9050826
捐赠科研通 2745793
什么是DOI,文献DOI怎么找? 1506578
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695677