A combined machine learning/search algorithm-based method for the identification of constitutive parameters from laboratory tests and in-situ tests

鉴定(生物学) 算法 原位 计算机科学 机器学习 工程类 人工智能 物理 植物 生物 气象学
作者
Changjian Zhou,Bin Gao,Bin Yan,Wenxuan Zhu,Guanlin Ye
出处
期刊:Computers and Geotechnics [Elsevier]
卷期号:170: 106268-106268 被引量:10
标识
DOI:10.1016/j.compgeo.2024.106268
摘要

Accurate numerical analysis in geotechnical engineering heavily relies on the constitutive model and its parameters. The advanced constitutive model can describe the complex mechanical behaviors of soil that may involve a number of parameters. However, determining the values of constitutive parameters always relies on manual trial-and-error, which can be a time-consuming process and not conducive to widespread application. This paper presents an identification method that combines machine learning with search algorithm based on the laboratory and in-situ testing. Initially, the sensitivity of constitutive parameters was analyzed by investigating the effects of variations in soil overconsolidation and structural parameters on the results of triaxial and pressuremeter tests. Subsequently, the initial state parameter values and material control parameter ranges of the soil can be identified from the triaxial tests, this is achieved by using the neural network model. In order to accurately determine the parameters value, the numerical model was established based on in-situ pressuremeter test, and traversal algorithm was implemented to search for the optimal fit values within the range of material control parameters. Finally, the proposed identification method was applied to layers 3–5 of Shanghai clay, and the inverted parameters exhibited a good fit with the outcomes of triaxial tests and pressuremeter tests. The combination of laboratory and in-situ testing can enhance the reliability of obtaining constitutive parameters, and this method provides an insight into the parameters identification for advanced constitutive models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实天亦发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
annoraz完成签到,获得积分10
3秒前
Tessa完成签到,获得积分10
4秒前
思源应助caitSith采纳,获得10
4秒前
5秒前
7秒前
8秒前
闪耀吨吨完成签到,获得积分10
9秒前
ikea1984发布了新的文献求助10
9秒前
多走一步发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
11秒前
Leon_Kim完成签到,获得积分10
11秒前
汉堡包应助禾火采纳,获得10
11秒前
Akim应助布鲁采纳,获得10
12秒前
12秒前
JamesPei应助一灯大师采纳,获得10
14秒前
valorb完成签到,获得积分0
14秒前
杭杭发布了新的文献求助10
15秒前
所所应助猪可以搞科研吗采纳,获得10
15秒前
踏实天亦完成签到,获得积分10
15秒前
小肆完成签到 ,获得积分10
16秒前
英俊的铭应助多情新蕾采纳,获得10
16秒前
俄而完成签到 ,获得积分10
18秒前
周凡淇发布了新的文献求助100
20秒前
科研通AI6.1应助三金采纳,获得30
21秒前
22秒前
小呆子完成签到,获得积分10
23秒前
酷波er应助xh采纳,获得10
23秒前
28秒前
科研通AI6.1应助一灯大师采纳,获得10
29秒前
布鲁发布了新的文献求助10
29秒前
ikea1984完成签到,获得积分10
29秒前
多走一步完成签到,获得积分20
29秒前
just完成签到,获得积分10
29秒前
31秒前
31秒前
嘿嘿嘿嘿完成签到,获得积分10
31秒前
大个应助李琦采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742180
求助须知:如何正确求助?哪些是违规求助? 5406715
关于积分的说明 15344214
捐赠科研通 4883585
什么是DOI,文献DOI怎么找? 2625155
邀请新用户注册赠送积分活动 1574005
关于科研通互助平台的介绍 1530964