A combined machine learning/search algorithm-based method for the identification of constitutive parameters from laboratory tests and in-situ tests

鉴定(生物学) 算法 原位 计算机科学 机器学习 工程类 人工智能 物理 植物 生物 气象学
作者
Changjian Zhou,Bin Gao,Bin Yan,Wenxuan Zhu,Guanlin Ye
出处
期刊:Computers and Geotechnics [Elsevier]
卷期号:170: 106268-106268 被引量:10
标识
DOI:10.1016/j.compgeo.2024.106268
摘要

Accurate numerical analysis in geotechnical engineering heavily relies on the constitutive model and its parameters. The advanced constitutive model can describe the complex mechanical behaviors of soil that may involve a number of parameters. However, determining the values of constitutive parameters always relies on manual trial-and-error, which can be a time-consuming process and not conducive to widespread application. This paper presents an identification method that combines machine learning with search algorithm based on the laboratory and in-situ testing. Initially, the sensitivity of constitutive parameters was analyzed by investigating the effects of variations in soil overconsolidation and structural parameters on the results of triaxial and pressuremeter tests. Subsequently, the initial state parameter values and material control parameter ranges of the soil can be identified from the triaxial tests, this is achieved by using the neural network model. In order to accurately determine the parameters value, the numerical model was established based on in-situ pressuremeter test, and traversal algorithm was implemented to search for the optimal fit values within the range of material control parameters. Finally, the proposed identification method was applied to layers 3–5 of Shanghai clay, and the inverted parameters exhibited a good fit with the outcomes of triaxial tests and pressuremeter tests. The combination of laboratory and in-situ testing can enhance the reliability of obtaining constitutive parameters, and this method provides an insight into the parameters identification for advanced constitutive models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小豆完成签到,获得积分10
1秒前
淡淡友瑶完成签到,获得积分10
1秒前
Mmmmarys完成签到,获得积分10
1秒前
jubai应助聪慧的馒头mu采纳,获得10
2秒前
2秒前
jubai应助聪慧的馒头mu采纳,获得10
2秒前
大个应助飘逸数据线采纳,获得10
3秒前
科研完成签到,获得积分10
3秒前
哈哈完成签到,获得积分20
3秒前
3秒前
qfly123完成签到,获得积分10
3秒前
3秒前
wang完成签到,获得积分10
4秒前
4秒前
furin001完成签到,获得积分10
4秒前
2424完成签到,获得积分10
4秒前
4秒前
超人发布了新的文献求助10
4秒前
科研通AI6应助甾醇采纳,获得10
4秒前
茉行发布了新的文献求助10
5秒前
5秒前
Panchael完成签到,获得积分10
5秒前
5秒前
6秒前
内向以彤完成签到,获得积分10
6秒前
天天快乐应助拼搏的高高采纳,获得10
6秒前
orixero应助ilmiss采纳,获得10
7秒前
Jasper应助典雅的俊驰采纳,获得10
7秒前
Akim应助曾经的代曼采纳,获得10
7秒前
jkhjkhj发布了新的文献求助10
7秒前
7秒前
杨宝仪完成签到,获得积分10
8秒前
8秒前
8秒前
LLLLLL发布了新的文献求助10
8秒前
Ava应助内向以彤采纳,获得10
8秒前
风起人散完成签到,获得积分10
9秒前
59完成签到,获得积分10
9秒前
丰富采波完成签到 ,获得积分20
9秒前
旋转门完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654