A combined machine learning/search algorithm-based method for the identification of constitutive parameters from laboratory tests and in-situ tests

鉴定(生物学) 算法 原位 计算机科学 机器学习 工程类 人工智能 物理 植物 气象学 生物
作者
Changjian Zhou,Bin Gao,Bin Yan,Wenxuan Zhu,Guanlin Ye
出处
期刊:Computers and Geotechnics [Elsevier]
卷期号:170: 106268-106268 被引量:10
标识
DOI:10.1016/j.compgeo.2024.106268
摘要

Accurate numerical analysis in geotechnical engineering heavily relies on the constitutive model and its parameters. The advanced constitutive model can describe the complex mechanical behaviors of soil that may involve a number of parameters. However, determining the values of constitutive parameters always relies on manual trial-and-error, which can be a time-consuming process and not conducive to widespread application. This paper presents an identification method that combines machine learning with search algorithm based on the laboratory and in-situ testing. Initially, the sensitivity of constitutive parameters was analyzed by investigating the effects of variations in soil overconsolidation and structural parameters on the results of triaxial and pressuremeter tests. Subsequently, the initial state parameter values and material control parameter ranges of the soil can be identified from the triaxial tests, this is achieved by using the neural network model. In order to accurately determine the parameters value, the numerical model was established based on in-situ pressuremeter test, and traversal algorithm was implemented to search for the optimal fit values within the range of material control parameters. Finally, the proposed identification method was applied to layers 3–5 of Shanghai clay, and the inverted parameters exhibited a good fit with the outcomes of triaxial tests and pressuremeter tests. The combination of laboratory and in-situ testing can enhance the reliability of obtaining constitutive parameters, and this method provides an insight into the parameters identification for advanced constitutive models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
psu发布了新的文献求助10
刚刚
1秒前
目白麦昆发布了新的文献求助10
2秒前
科研通AI6应助忐忑的猪采纳,获得10
2秒前
研友_VZG7GZ应助kathy采纳,获得30
4秒前
zhang完成签到,获得积分10
4秒前
4秒前
5秒前
GoGoGo发布了新的文献求助10
5秒前
年禹发布了新的文献求助10
6秒前
赘婿应助xiaojinzi采纳,获得10
6秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
disjustar应助科研通管家采纳,获得200
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
在水一方应助布丁宝采纳,获得10
9秒前
ccm应助科研通管家采纳,获得10
9秒前
aldeheby应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
Owen应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
10秒前
JamesPei应助sujingbo采纳,获得10
10秒前
研友_VZG7GZ应助zkb采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458048
求助须知:如何正确求助?哪些是违规求助? 4564233
关于积分的说明 14294126
捐赠科研通 4489016
什么是DOI,文献DOI怎么找? 2458832
邀请新用户注册赠送积分活动 1448759
关于科研通互助平台的介绍 1424403