A combined machine learning/search algorithm-based method for the identification of constitutive parameters from laboratory tests and in-situ tests

鉴定(生物学) 算法 原位 计算机科学 机器学习 工程类 人工智能 物理 植物 生物 气象学
作者
Changjian Zhou,Bin Gao,Bin Yan,Wenxuan Zhu,Guanlin Ye
出处
期刊:Computers and Geotechnics [Elsevier]
卷期号:170: 106268-106268 被引量:10
标识
DOI:10.1016/j.compgeo.2024.106268
摘要

Accurate numerical analysis in geotechnical engineering heavily relies on the constitutive model and its parameters. The advanced constitutive model can describe the complex mechanical behaviors of soil that may involve a number of parameters. However, determining the values of constitutive parameters always relies on manual trial-and-error, which can be a time-consuming process and not conducive to widespread application. This paper presents an identification method that combines machine learning with search algorithm based on the laboratory and in-situ testing. Initially, the sensitivity of constitutive parameters was analyzed by investigating the effects of variations in soil overconsolidation and structural parameters on the results of triaxial and pressuremeter tests. Subsequently, the initial state parameter values and material control parameter ranges of the soil can be identified from the triaxial tests, this is achieved by using the neural network model. In order to accurately determine the parameters value, the numerical model was established based on in-situ pressuremeter test, and traversal algorithm was implemented to search for the optimal fit values within the range of material control parameters. Finally, the proposed identification method was applied to layers 3–5 of Shanghai clay, and the inverted parameters exhibited a good fit with the outcomes of triaxial tests and pressuremeter tests. The combination of laboratory and in-situ testing can enhance the reliability of obtaining constitutive parameters, and this method provides an insight into the parameters identification for advanced constitutive models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gpy应助呵呵呵呵采纳,获得10
1秒前
科研完成签到,获得积分10
2秒前
科研通AI2S应助飞快的尔蓝采纳,获得10
2秒前
斯文败类应助飞快的尔蓝采纳,获得10
2秒前
3秒前
一一应助稳重的蛟凤采纳,获得20
3秒前
xiaole完成签到,获得积分10
4秒前
6666666666发布了新的文献求助20
4秒前
4秒前
DWDD发布了新的文献求助10
4秒前
成龙王发布了新的文献求助10
5秒前
BowieHuang应助颖颖采纳,获得10
5秒前
科研通AI6.1应助jingle采纳,获得10
5秒前
5秒前
6秒前
sswbzh给好运偏爱的那个男的的求助进行了留言
6秒前
6秒前
6秒前
7秒前
8秒前
8秒前
坚定的雁完成签到 ,获得积分10
8秒前
8秒前
Sun1c7发布了新的文献求助10
8秒前
9秒前
9秒前
邢丹丹发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
勤恳的鹰发布了新的文献求助10
12秒前
小丸子发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
不安乐曲发布了新的文献求助10
13秒前
BowieHuang应助啵啵采纳,获得10
13秒前
14秒前
CodeCraft应助千里采纳,获得10
14秒前
14秒前
wangxuejiao发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933