Combined approach to dysarthric speaker verification using data augmentation and feature fusion

说话人验证 语音识别 计算机科学 传感器融合 特征(语言学) 融合 说话人识别 人工智能 说话人日记 自然语言处理 模式识别(心理学) 语言学 哲学
作者
Shinimol Salim,S. Shahnawazuddin,Waquar Ahmad
出处
期刊:Speech Communication [Elsevier]
卷期号:160: 103070-103070
标识
DOI:10.1016/j.specom.2024.103070
摘要

In this study, the challenges of adapting automatic speaker verification (ASV) systems to accommodate individuals with dysarthria, a speech disorder affecting intelligibility and articulation, are addressed. The scarcity of dysarthric speech data presents a significant obstacle in the development of an effective ASV system. To mitigate the detrimental effects of data paucity, an out-of-domain data augmentation approach was employed based on the observation that dysarthric speech often exhibits longer phoneme duration. Motivated by this observation, the duration of healthy speech data was modified with various stretching factors and then pooled into training, resulting in a significant reduction in the error rate. In addition to analyzing average phoneme duration, another analysis revealed that dysarthric speech contains crucial high-frequency spectral information. However, Mel-frequency cepstral coefficients (MFCC) are inherently designed to down-sample spectral information in the higher-frequency regions, and the same is true for Mel-filterbank features. To address this shortcoming, Linear-filterbank cepstral coefficients (LFCC) were used in combination with MFCC features. While MFCC effectively captures certain aspects of dysarthric speech, LFCC complements this by capturing high-frequency details essential for accurate dysarthric speaker verification. This proposed feature fusion effectively minimizes spectral information loss, further reducing error rates. To support the significance of combination of MFCC and LFCC features in an automatic speaker verification system for speakers with dysarthria, comprehensive experimentation was conducted. The fusion of MFCC and LFCC features was compared with several other front-end acoustic features, such as Mel-filterbank features, linear filterbank features, wavelet filterbank features, linear prediction cepstral coefficients (LPCC), frequency domain LPCC, and constant Q cepstral coefficients (CQCC). The approaches were evaluated using both i-vector and x-vector-based representation, comparing systems developed using MFCC and LFCC features individually and in combination. The experimental results presented in this paper demonstrate substantial improvements, with a 25.78% reduction in equal error rate (EER) for i-vector models and a 23.66% reduction in EER for x-vector models when compared to the baseline ASV system. Additionally, the effect of feature concatenation with variation in dysarthria severity levels (low, medium, and high) was studied, and the proposed approach was found to be highly effective in those cases as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czp发布了新的文献求助10
刚刚
刚刚
EvY发布了新的文献求助10
刚刚
1秒前
世界和平完成签到,获得积分10
1秒前
1秒前
2秒前
ly普鲁卡因完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
橙子发布了新的文献求助10
4秒前
壁上同年发布了新的文献求助10
4秒前
ILJM发布了新的文献求助10
5秒前
6秒前
7秒前
娟娟发布了新的文献求助10
8秒前
8秒前
lewis完成签到,获得积分10
9秒前
9秒前
坚定之桃完成签到,获得积分10
10秒前
11秒前
邓焕然发布了新的文献求助10
11秒前
Rqbnicsp发布了新的文献求助10
11秒前
7473完成签到,获得积分10
12秒前
12秒前
丘比特应助明亮的问薇采纳,获得10
12秒前
13秒前
坚果爱吃坚果完成签到 ,获得积分10
14秒前
坚定幻嫣完成签到,获得积分10
14秒前
CodeCraft应助茜134采纳,获得10
14秒前
16秒前
阿红发布了新的文献求助10
16秒前
大胆的小白菜完成签到,获得积分10
16秒前
chengll发布了新的文献求助10
17秒前
18秒前
壁上同年完成签到,获得积分10
18秒前
兔兔不吐泡泡给兔兔不吐泡泡的求助进行了留言
19秒前
czp完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328