Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models

计算流体力学 相变材料 相变 材料科学 金属泡沫 电池(电) 参数统计 热的 机械工程 电子设备和系统的热管理 工程类 复合材料 热力学 工程物理 航空航天工程 多孔性 物理 功率(物理) 统计 数学
作者
Hasan Najafi Khaboshan,Farzad Jaliliantabar,Abdul Adam Abdullah,Satyam Panchal,Amiratabak Azarinia
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:247: 123080-123080 被引量:42
标识
DOI:10.1016/j.applthermaleng.2024.123080
摘要

The focus on developing an effective battery thermal management system (BTMS) to maintain optimal temperatures for lithium-ion batteries (LIBs), especially in electric vehicle (EV) applications, has grown significantly. The effective BTMS not only enhances the cooling performance of LIBs but also contributes to increased passenger safety and mileage of EVs. This study investigates BTMS configurations with fins, metal foam, and phase change material (PCM) to minimize temperature of battery during 3C discharging in varying conditions. Additionally, the study explores the impact of different BTMS material combinations and various fins lengths on system performance as a parametric investigation. Moreover, to streamline the analysis process and introduce novelty, artificial intelligence is explored as an alternative to computational fluid dynamics for predicting liquid fraction of PCM and temperature of battery, enhancing the innovative aspect of this study. Numerical simulations, using a non-equilibrium thermal model for metal foam modeling, reveal that the fourth case, integrating all three passive approaches, maintains the lowest temperature and enhances LIB cooling. The optimum BTMS shows a reduction of 3 K compared to BTMS utilizing pure PCM. During discharge process, the temperature difference in the battery decreases by approximately 75 % and 66 % in the fourth case compared to the first case (with pure PCM) under normal and harsh environmental conditions, respectively. Applying copper metal foam and copper fins yields the best results in reducing battery temperature. Increasing the length of fins and adding more fins effectively lower the battery temperature. Finally, an artificial neural network model is developed using the backpropagation learning technique coupled with the gradient descent optimization algorithm. The model exhibits excellent predictive capabilities, achieving high R-squared values of 0.98 for PCM liquid fraction and 0.99 for battery temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
大鱼完成签到,获得积分10
1秒前
1秒前
lu完成签到,获得积分10
2秒前
Murphy完成签到 ,获得积分10
2秒前
斯文败类应助大方嵩采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得30
3秒前
hh应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得20
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
sutharsons应助科研通管家采纳,获得200
4秒前
orixero应助科研通管家采纳,获得10
4秒前
许多知识发布了新的文献求助10
5秒前
FashionBoy应助su采纳,获得10
5秒前
5秒前
运敬完成签到 ,获得积分10
6秒前
XSB完成签到,获得积分10
6秒前
青草蛋糕完成签到 ,获得积分10
6秒前
怡然剑成完成签到,获得积分10
6秒前
6秒前
liyuchen发布了新的文献求助10
7秒前
ipeakkka完成签到,获得积分20
9秒前
马克发布了新的文献求助10
9秒前
赵OO完成签到,获得积分10
9秒前
Yon完成签到 ,获得积分10
10秒前
呆头完成签到,获得积分10
10秒前
科研通AI5应助skier采纳,获得10
11秒前
ywang发布了新的文献求助10
13秒前
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824