Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models

计算流体力学 相变材料 材料科学 电池(电) 参数统计 热的 机械工程 工程类 汽车工程 热力学 航空航天工程 物理 数学 统计 功率(物理)
作者
Hasan Najafi Khaboshan,Farzad Jaliliantabar,Abdul Adam Abdullah,Satyam Panchal,Amiratabak Azarinia
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:247: 123080-123080 被引量:80
标识
DOI:10.1016/j.applthermaleng.2024.123080
摘要

The focus on developing an effective battery thermal management system (BTMS) to maintain optimal temperatures for lithium-ion batteries (LIBs), especially in electric vehicle (EV) applications, has grown significantly. The effective BTMS not only enhances the cooling performance of LIBs but also contributes to increased passenger safety and mileage of EVs. This study investigates BTMS configurations with fins, metal foam, and phase change material (PCM) to minimize temperature of battery during 3C discharging in varying conditions. Additionally, the study explores the impact of different BTMS material combinations and various fins lengths on system performance as a parametric investigation. Moreover, to streamline the analysis process and introduce novelty, artificial intelligence is explored as an alternative to computational fluid dynamics for predicting liquid fraction of PCM and temperature of battery, enhancing the innovative aspect of this study. Numerical simulations, using a non-equilibrium thermal model for metal foam modeling, reveal that the fourth case, integrating all three passive approaches, maintains the lowest temperature and enhances LIB cooling. The optimum BTMS shows a reduction of 3 K compared to BTMS utilizing pure PCM. During discharge process, the temperature difference in the battery decreases by approximately 75 % and 66 % in the fourth case compared to the first case (with pure PCM) under normal and harsh environmental conditions, respectively. Applying copper metal foam and copper fins yields the best results in reducing battery temperature. Increasing the length of fins and adding more fins effectively lower the battery temperature. Finally, an artificial neural network model is developed using the backpropagation learning technique coupled with the gradient descent optimization algorithm. The model exhibits excellent predictive capabilities, achieving high R-squared values of 0.98 for PCM liquid fraction and 0.99 for battery temperature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23333完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
养猪大户完成签到 ,获得积分10
3秒前
思辰。完成签到,获得积分10
4秒前
5秒前
6秒前
高挑的金毛完成签到 ,获得积分10
6秒前
lyw完成签到 ,获得积分10
7秒前
liliAnh完成签到 ,获得积分10
8秒前
俭朴的一曲完成签到,获得积分10
9秒前
Ximao1008完成签到,获得积分10
10秒前
历史真相发布了新的文献求助10
10秒前
GXW完成签到,获得积分10
11秒前
pp完成签到 ,获得积分10
12秒前
13秒前
眯眯眼的谷冬完成签到 ,获得积分10
14秒前
重要的惜萍完成签到,获得积分10
14秒前
付其喜完成签到 ,获得积分10
15秒前
聂先生完成签到,获得积分10
16秒前
Hiromi完成签到,获得积分20
16秒前
量子星尘发布了新的文献求助10
19秒前
朱洪帆发布了新的文献求助10
19秒前
22秒前
ZHDNCG完成签到,获得积分10
28秒前
mia完成签到,获得积分10
30秒前
吃吃货完成签到 ,获得积分10
35秒前
CadoreK完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
36秒前
40秒前
启程完成签到 ,获得积分10
42秒前
43秒前
Terry完成签到,获得积分10
43秒前
ming发布了新的文献求助10
46秒前
allrubbish完成签到,获得积分10
47秒前
量子星尘发布了新的文献求助10
53秒前
小成完成签到 ,获得积分10
55秒前
危机的道天完成签到 ,获得积分10
56秒前
56秒前
cc完成签到 ,获得积分10
57秒前
爱听歌的雁开完成签到 ,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651420
求助须知:如何正确求助?哪些是违规求助? 4784722
关于积分的说明 15053723
捐赠科研通 4810070
什么是DOI,文献DOI怎么找? 2572937
邀请新用户注册赠送积分活动 1528830
关于科研通互助平台的介绍 1487848