Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models

计算流体力学 相变材料 材料科学 电池(电) 参数统计 热的 机械工程 工程类 汽车工程 热力学 航空航天工程 物理 功率(物理) 统计 数学
作者
Hasan Najafi Khaboshan,Farzad Jaliliantabar,Abdul Adam Abdullah,Satyam Panchal,Amiratabak Azarinia
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:247: 123080-123080 被引量:80
标识
DOI:10.1016/j.applthermaleng.2024.123080
摘要

The focus on developing an effective battery thermal management system (BTMS) to maintain optimal temperatures for lithium-ion batteries (LIBs), especially in electric vehicle (EV) applications, has grown significantly. The effective BTMS not only enhances the cooling performance of LIBs but also contributes to increased passenger safety and mileage of EVs. This study investigates BTMS configurations with fins, metal foam, and phase change material (PCM) to minimize temperature of battery during 3C discharging in varying conditions. Additionally, the study explores the impact of different BTMS material combinations and various fins lengths on system performance as a parametric investigation. Moreover, to streamline the analysis process and introduce novelty, artificial intelligence is explored as an alternative to computational fluid dynamics for predicting liquid fraction of PCM and temperature of battery, enhancing the innovative aspect of this study. Numerical simulations, using a non-equilibrium thermal model for metal foam modeling, reveal that the fourth case, integrating all three passive approaches, maintains the lowest temperature and enhances LIB cooling. The optimum BTMS shows a reduction of 3 K compared to BTMS utilizing pure PCM. During discharge process, the temperature difference in the battery decreases by approximately 75 % and 66 % in the fourth case compared to the first case (with pure PCM) under normal and harsh environmental conditions, respectively. Applying copper metal foam and copper fins yields the best results in reducing battery temperature. Increasing the length of fins and adding more fins effectively lower the battery temperature. Finally, an artificial neural network model is developed using the backpropagation learning technique coupled with the gradient descent optimization algorithm. The model exhibits excellent predictive capabilities, achieving high R-squared values of 0.98 for PCM liquid fraction and 0.99 for battery temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ptjam完成签到 ,获得积分10
刚刚
神勇的晟睿完成签到 ,获得积分10
1秒前
1秒前
曾珍完成签到 ,获得积分10
1秒前
Muhi完成签到,获得积分10
1秒前
1秒前
自带蓝牙的土豆完成签到 ,获得积分10
2秒前
青羽落霞完成签到 ,获得积分10
3秒前
抹颜完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
8秒前
胡图图完成签到,获得积分10
9秒前
睡觉大王完成签到 ,获得积分10
10秒前
11秒前
11秒前
12秒前
12秒前
17秒前
玩命的十三完成签到 ,获得积分10
17秒前
寂寞的诗云完成签到,获得积分10
19秒前
我爱科研完成签到 ,获得积分10
19秒前
20秒前
Bin_Liu发布了新的文献求助10
21秒前
She完成签到,获得积分10
21秒前
24秒前
Raki完成签到,获得积分10
25秒前
22完成签到 ,获得积分10
25秒前
Echo_1995完成签到,获得积分10
28秒前
徐慕源完成签到,获得积分10
28秒前
able发布了新的文献求助10
29秒前
呜呜完成签到 ,获得积分10
30秒前
30秒前
CQ完成签到 ,获得积分10
31秒前
漂亮天真完成签到,获得积分10
32秒前
gmc完成签到 ,获得积分10
32秒前
怡然白竹完成签到 ,获得积分10
34秒前
懵懂的海露完成签到,获得积分10
38秒前
testz完成签到,获得积分10
40秒前
41秒前
一一一完成签到,获得积分10
44秒前
翊然甜周完成签到,获得积分10
44秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022