Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models

计算流体力学 相变材料 材料科学 电池(电) 参数统计 热的 机械工程 工程类 汽车工程 热力学 航空航天工程 物理 功率(物理) 统计 数学
作者
Hasan Najafi Khaboshan,Farzad Jaliliantabar,Abdul Adam Abdullah,Satyam Panchal,Amiratabak Azarinia
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:247: 123080-123080 被引量:80
标识
DOI:10.1016/j.applthermaleng.2024.123080
摘要

The focus on developing an effective battery thermal management system (BTMS) to maintain optimal temperatures for lithium-ion batteries (LIBs), especially in electric vehicle (EV) applications, has grown significantly. The effective BTMS not only enhances the cooling performance of LIBs but also contributes to increased passenger safety and mileage of EVs. This study investigates BTMS configurations with fins, metal foam, and phase change material (PCM) to minimize temperature of battery during 3C discharging in varying conditions. Additionally, the study explores the impact of different BTMS material combinations and various fins lengths on system performance as a parametric investigation. Moreover, to streamline the analysis process and introduce novelty, artificial intelligence is explored as an alternative to computational fluid dynamics for predicting liquid fraction of PCM and temperature of battery, enhancing the innovative aspect of this study. Numerical simulations, using a non-equilibrium thermal model for metal foam modeling, reveal that the fourth case, integrating all three passive approaches, maintains the lowest temperature and enhances LIB cooling. The optimum BTMS shows a reduction of 3 K compared to BTMS utilizing pure PCM. During discharge process, the temperature difference in the battery decreases by approximately 75 % and 66 % in the fourth case compared to the first case (with pure PCM) under normal and harsh environmental conditions, respectively. Applying copper metal foam and copper fins yields the best results in reducing battery temperature. Increasing the length of fins and adding more fins effectively lower the battery temperature. Finally, an artificial neural network model is developed using the backpropagation learning technique coupled with the gradient descent optimization algorithm. The model exhibits excellent predictive capabilities, achieving high R-squared values of 0.98 for PCM liquid fraction and 0.99 for battery temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丫丫发布了新的文献求助10
1秒前
huangyikun发布了新的文献求助10
1秒前
叔铭完成签到,获得积分10
2秒前
大个应助ZONG采纳,获得10
4秒前
4秒前
Ma完成签到,获得积分10
5秒前
孙燕应助猪猪hero采纳,获得10
5秒前
会发光的小灰灰完成签到,获得积分10
5秒前
板凳儿cc发布了新的文献求助10
5秒前
黑色天使发布了新的文献求助10
6秒前
6秒前
激情的代曼完成签到,获得积分10
6秒前
7秒前
10秒前
缓慢手机完成签到,获得积分10
10秒前
丫丫完成签到,获得积分10
10秒前
11秒前
时尚俊驰发布了新的文献求助10
11秒前
耍酷的冷雪完成签到,获得积分10
12秒前
wanci应助baonali采纳,获得10
14秒前
ZONG发布了新的文献求助10
15秒前
wuy发布了新的文献求助10
15秒前
123完成签到,获得积分10
16秒前
17秒前
saisyo发布了新的文献求助10
18秒前
隐形曼青应助炸胡娃娃采纳,获得30
19秒前
坦率白萱应助wwl采纳,获得10
19秒前
NexusExplorer应助小晓采纳,获得10
19秒前
20秒前
20秒前
123发布了新的文献求助10
21秒前
搞怪的紫易完成签到,获得积分10
21秒前
WYQ完成签到,获得积分10
21秒前
幸福大白发布了新的文献求助10
23秒前
玩命的凝天完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
zxq1996完成签到 ,获得积分10
23秒前
所所应助时尚俊驰采纳,获得10
24秒前
LU41完成签到,获得积分10
25秒前
桑榆完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174