Bidirectional temporal-delay graph convolutional network for detecting fake news

计算机科学 图形 计算机网络 理论计算机科学
作者
Yunfei Yin,Zhiling Chen,Xianjian Bao,Yunfei Yin,Zhiling Chen,Xianjian Bao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108368-108368 被引量:5
标识
DOI:10.1016/j.engappai.2024.108368
摘要

Fake news detection (FND) is an application-oriented hotspot in the field of artificial intelligence, whose task is to make neural networks to judge the authenticity of given news, and the challenge it faces is how to train neural networks effectively. Currently, state-of-the-art approaches typically employ the methods based on graph convolutional neural networks (GCNs) to extract features of news dissemination. However, these methods cannot effectively represent temporal features and cannot handle the problem of imbalanced positive and negative samples. This motivates us to investigate the impact of temporal information on fake news detection and the impact of sample balance on model training. To this end, we propose a social media Fake News Detection model based on Bidirectional Temporal-delay Graph Convolution Network (BTGCN-FND). In BTGCN-FND, we extend unidirectional graphs to bidirectional graphs and design bidirectional temporal-delay graph convolutional networks to effectively represent graph-structured data. We further design heuristic graph-structured data enhancement strategies to fully leverage information. Moreover, we introduce a graph contrastive learning method, which improves the model performance by computing the mutual information between positive and negative samples. We have conducted experimental researches on two publicly available real-world datasets. The experimental results show that compared with the current state-of-the-art methods, our model has achieved an average improvement of 2.2% in detection accuracy and 1.9% in F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
话家完成签到,获得积分10
刚刚
Ava应助123采纳,获得10
刚刚
didilvlv完成签到,获得积分10
刚刚
小渝干完成签到,获得积分10
1秒前
思源应助欣喜的饼干采纳,获得10
1秒前
1秒前
hhing完成签到,获得积分10
1秒前
赘婿应助臆想采纳,获得10
1秒前
NexusExplorer应助燕园采纳,获得10
1秒前
1秒前
2秒前
林夕少爷发布了新的文献求助10
2秒前
3秒前
3秒前
科研牛马完成签到,获得积分10
3秒前
4秒前
AdventureChen完成签到 ,获得积分10
4秒前
4秒前
Suimy发布了新的文献求助10
5秒前
小齐爱科研完成签到,获得积分10
5秒前
Ava应助炙热的诗桃采纳,获得10
5秒前
5秒前
6秒前
慕青应助直率心锁采纳,获得10
6秒前
李健应助小艳胡采纳,获得10
6秒前
6秒前
斯文败类应助Tu采纳,获得10
6秒前
张振宇完成签到 ,获得积分10
7秒前
Stella应助喜悦的秋柔采纳,获得30
7秒前
小马甲应助123采纳,获得10
7秒前
7秒前
fyl发布了新的文献求助10
8秒前
Manphie完成签到 ,获得积分0
8秒前
共享精神应助Hydaniel采纳,获得10
8秒前
8秒前
大个应助小赵很努力采纳,获得10
9秒前
9秒前
9秒前
Yu完成签到,获得积分10
9秒前
兔子完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313