Bidirectional temporal-delay graph convolutional network for detecting fake news

计算机科学 图形 计算机网络 理论计算机科学
作者
Yunfei Yin,Zhiling Chen,Xianjian Bao,Yunfei Yin,Zhiling Chen,Xianjian Bao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108368-108368 被引量:5
标识
DOI:10.1016/j.engappai.2024.108368
摘要

Fake news detection (FND) is an application-oriented hotspot in the field of artificial intelligence, whose task is to make neural networks to judge the authenticity of given news, and the challenge it faces is how to train neural networks effectively. Currently, state-of-the-art approaches typically employ the methods based on graph convolutional neural networks (GCNs) to extract features of news dissemination. However, these methods cannot effectively represent temporal features and cannot handle the problem of imbalanced positive and negative samples. This motivates us to investigate the impact of temporal information on fake news detection and the impact of sample balance on model training. To this end, we propose a social media Fake News Detection model based on Bidirectional Temporal-delay Graph Convolution Network (BTGCN-FND). In BTGCN-FND, we extend unidirectional graphs to bidirectional graphs and design bidirectional temporal-delay graph convolutional networks to effectively represent graph-structured data. We further design heuristic graph-structured data enhancement strategies to fully leverage information. Moreover, we introduce a graph contrastive learning method, which improves the model performance by computing the mutual information between positive and negative samples. We have conducted experimental researches on two publicly available real-world datasets. The experimental results show that compared with the current state-of-the-art methods, our model has achieved an average improvement of 2.2% in detection accuracy and 1.9% in F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
伊梦完成签到,获得积分10
1秒前
1秒前
Shilly完成签到,获得积分10
3秒前
Liou发布了新的文献求助10
5秒前
5秒前
伊梦发布了新的文献求助10
5秒前
晁子枫发布了新的文献求助10
6秒前
英俊的铭应助xu采纳,获得10
7秒前
8秒前
如意的酬海关注了科研通微信公众号
10秒前
冷静唇膏完成签到 ,获得积分10
10秒前
13秒前
jzm完成签到,获得积分20
14秒前
111完成签到,获得积分20
14秒前
16秒前
SciGPT应助33采纳,获得30
16秒前
16秒前
17秒前
111发布了新的文献求助10
17秒前
充电宝应助T拐拐采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
wade1991163发布了新的文献求助10
19秒前
lst发布了新的文献求助10
20秒前
张超超发布了新的文献求助10
21秒前
nino发布了新的文献求助10
21秒前
调皮的志泽完成签到,获得积分20
22秒前
小胡椒完成签到,获得积分20
22秒前
肖星星完成签到,获得积分10
23秒前
斑马不一般应助张亚博采纳,获得10
23秒前
zzjjhh发布了新的文献求助50
24秒前
24秒前
CipherSage应助科研通管家采纳,获得10
25秒前
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
lyf完成签到 ,获得积分10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416856
求助须知:如何正确求助?哪些是违规求助? 4532976
关于积分的说明 14137292
捐赠科研通 4448956
什么是DOI,文献DOI怎么找? 2440505
邀请新用户注册赠送积分活动 1432315
关于科研通互助平台的介绍 1409793