Bidirectional temporal-delay graph convolutional network for detecting fake news

计算机科学 图形 计算机网络 理论计算机科学
作者
Yunfei Yin,Zhiling Chen,Xianjian Bao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108368-108368
标识
DOI:10.1016/j.engappai.2024.108368
摘要

Fake news detection (FND) is an application-oriented hotspot in the field of artificial intelligence, whose task is to make neural networks to judge the authenticity of given news, and the challenge it faces is how to train neural networks effectively. Currently, state-of-the-art approaches typically employ the methods based on graph convolutional neural networks (GCNs) to extract features of news dissemination. However, these methods cannot effectively represent temporal features and cannot handle the problem of imbalanced positive and negative samples. This motivates us to investigate the impact of temporal information on fake news detection and the impact of sample balance on model training. To this end, we propose a social media Fake News Detection model based on Bidirectional Temporal-delay Graph Convolution Network (BTGCN-FND). In BTGCN-FND, we extend unidirectional graphs to bidirectional graphs and design bidirectional temporal-delay graph convolutional networks to effectively represent graph-structured data. We further design heuristic graph-structured data enhancement strategies to fully leverage information. Moreover, we introduce a graph contrastive learning method, which improves the model performance by computing the mutual information between positive and negative samples. We have conducted experimental researches on two publicly available real-world datasets. The experimental results show that compared with the current state-of-the-art methods, our model has achieved an average improvement of 2.2% in detection accuracy and 1.9% in F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遇上就这样吧应助西西采纳,获得10
刚刚
量子星尘发布了新的文献求助50
1秒前
现代灵寒发布了新的文献求助10
1秒前
就吃汉堡关注了科研通微信公众号
1秒前
小土豆完成签到,获得积分10
1秒前
耍酷含芙发布了新的文献求助10
2秒前
SciGPT应助tonyfountain采纳,获得10
2秒前
syk发布了新的文献求助10
2秒前
共享精神应助赵辉采纳,获得10
2秒前
3秒前
...完成签到,获得积分10
3秒前
xiaodong发布了新的文献求助10
3秒前
misstwo完成签到,获得积分10
3秒前
luobo123应助羽毛采纳,获得10
4秒前
gao发布了新的文献求助10
4秒前
4秒前
科研通AI6应助真实的青曼采纳,获得10
4秒前
小梦完成签到,获得积分10
5秒前
6秒前
6秒前
clevenx发布了新的文献求助10
6秒前
CHOU完成签到,获得积分10
6秒前
7秒前
做梦完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
阔达月饼完成签到,获得积分10
8秒前
所所应助luqi采纳,获得10
8秒前
斯文败类应助苹果孤容采纳,获得10
9秒前
9秒前
天天下文献完成签到 ,获得积分10
10秒前
小蘑材完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助150
11秒前
一年5篇发布了新的文献求助10
11秒前
碧蓝的若风完成签到,获得积分10
12秒前
12秒前
华仔应助云桑采纳,获得10
12秒前
打打应助打你的母牛采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835