Fruit grading system by reconstructed 3D hyperspectral full-surface images

高光谱成像 分级(工程) 遥感 环境科学 地质学 生物 生态学
作者
Jia‐Yong Song,Ze‐Sheng Qin,Chang‐Wen Xue,Lifeng Bian,Chen Yang
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:212: 112898-112898 被引量:3
标识
DOI:10.1016/j.postharvbio.2024.112898
摘要

Conducting hyperspectral imaging of fruit' entire surfaces while simultaneously evaluating their physical properties, such as volume and mass, can provide a richer dataset for comprehensive fruit classification. For this purpose, a fruit grading system using 3D hyperspectral full-surface images is developed, which is based on multi-view imaging of mirrors in the hardware structure design and relies on the virtual volume intersection (VI) algorithm and texture technology in software design. During the design process, a mathematical model for the mirror layout and system geometry parameters is established to determine the system's layout for scanning the entire surface of the sample. In practical applications, a prototype with 28 channels ranging from 400 to 1000 nm is developed for pear samples based on a sub-component control system, a spherical-cap cavity with flashing multi-color LEDs, and multiple side mirrors. The results obtained from this prototype reveal that the predicted volume (R2=96.18%) and mass (R2=98.18%) exhibit a high correlation with measured results and the hyperspectral data between bruised and normal pears is a significant difference. A dataset of pears of three qualities (large, small, and bruised) is prepared for comprehensive classification and resulting in an effective grading (95.33%), which shows that the proposed system is a potential solution for comprehensive fruit quality classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水獭发布了新的文献求助10
1秒前
奥雷里亚诺的小金鱼完成签到,获得积分10
1秒前
1秒前
LZZ发布了新的文献求助10
1秒前
昵称发布了新的文献求助10
2秒前
认真的一刀发布了新的文献求助200
2秒前
Lin发布了新的文献求助10
2秒前
杨燕华完成签到,获得积分10
2秒前
pxy完成签到,获得积分10
3秒前
4秒前
4秒前
...完成签到,获得积分10
4秒前
tfsn20完成签到,获得积分0
4秒前
程程完成签到 ,获得积分10
4秒前
彪壮的明轩完成签到,获得积分10
4秒前
夏夏发布了新的文献求助10
5秒前
西子阳发布了新的文献求助10
5秒前
xf完成签到,获得积分10
5秒前
MrCoolWu发布了新的文献求助10
5秒前
qq应助zjudxn采纳,获得10
6秒前
6秒前
整齐的千万完成签到 ,获得积分10
6秒前
liu完成签到,获得积分10
7秒前
笨笨球发布了新的文献求助10
8秒前
10秒前
包容的剑发布了新的文献求助10
10秒前
SS驳回了ding应助
10秒前
星辰大海应助ZY采纳,获得10
10秒前
丘比特应助鲜艳的棒棒糖采纳,获得10
10秒前
11秒前
12秒前
曾经耳机完成签到 ,获得积分10
12秒前
rain完成签到 ,获得积分10
12秒前
讲道理的卡卡完成签到 ,获得积分10
12秒前
水獭完成签到,获得积分10
12秒前
13秒前
13秒前
快乐滑板完成签到,获得积分0
13秒前
白小白发布了新的文献求助10
14秒前
陈淑玲完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762