亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An adaptive fault detection model based on variational auto-encoders and unsupervised transfer learning

自编码 计算机科学 算法 核(代数) 高斯函数 人工智能 高斯分布 模式识别(心理学) 数学 深度学习 量子力学 组合数学 物理
作者
Fengjun Shang,fengyin sun,Jiayu Wen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:157: 111515-111515 被引量:3
标识
DOI:10.1016/j.asoc.2024.111515
摘要

Aiming at the problem of insufficient generalization of fault detection in traditional machine learning, an SDN controller fault detection method based on unsupervised transfer learning is proposed. The method mainly includes two parts. (1) A Gaussian mixture variational autoencoder based on the autoregressive flow is proposed. First, the encoder and decoder of variational autocoding are improved with gated recurrent units, and the improved variational autocoding can process time series data. Secondly, the gated recurrent unit is improved by using the gravitational search algorithm, which speeds up the search of the weight of the gated recurrent unit. Further, considering that the latent space of the variational autoencoder is a single Gaussian distribution, and the complex data in reality is often too simple to be represented by a single Gaussian distribution. (2) Aiming at the problem of poor generalization of fault detection models in practical scenarios, a domain adaptive fault detection algorithm based on multi-kernel maximum mean difference and intra-class distance constraints is proposed. Map the features into the manifold space to eliminate the distortion of the features in the original space. After mapping, the distance between fields needs to be measured, and the maximum mean difference of a single kernel cannot determine which kernel function is more suitable for the current task in practical applications. Therefore, the maximum mean difference based on multi-core is introduced to measure between the two fields. The experimental results show that the algorithm proposed improves the accuracy about 5% compared with the previous algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
3秒前
桐桐应助科研通管家采纳,获得10
5秒前
浮浮世世应助科研通管家采纳,获得30
5秒前
Ava应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
浮浮世世应助科研通管家采纳,获得30
5秒前
慕青应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
合一海盗完成签到,获得积分10
6秒前
米团完成签到,获得积分10
6秒前
熄熄完成签到,获得积分10
7秒前
13秒前
17秒前
研友_8RyzBZ发布了新的文献求助10
20秒前
招水若离完成签到,获得积分0
21秒前
ding应助轻松的寻绿采纳,获得10
21秒前
突突leolo发布了新的文献求助10
22秒前
22秒前
Daisy完成签到,获得积分10
25秒前
hq完成签到 ,获得积分10
26秒前
21发布了新的文献求助10
26秒前
dalin完成签到 ,获得积分10
28秒前
29秒前
34秒前
疯狂的寻琴完成签到 ,获得积分10
36秒前
笑笑完成签到 ,获得积分10
37秒前
gxmu6322完成签到,获得积分10
38秒前
Laoxing258完成签到,获得积分10
41秒前
Daisy发布了新的文献求助10
42秒前
44秒前
淡淡碧玉完成签到,获得积分10
46秒前
46秒前
46秒前
46秒前
50秒前
Laoxing258发布了新的文献求助10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493637
求助须知:如何正确求助?哪些是违规求助? 4591684
关于积分的说明 14434378
捐赠科研通 4524067
什么是DOI,文献DOI怎么找? 2478597
邀请新用户注册赠送积分活动 1463596
关于科研通互助平台的介绍 1436439