亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An adaptive fault detection model based on variational auto-encoders and unsupervised transfer learning

自编码 计算机科学 算法 核(代数) 高斯函数 人工智能 高斯分布 模式识别(心理学) 数学 深度学习 量子力学 组合数学 物理
作者
Fengjun Shang,fengyin sun,Jiayu Wen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:157: 111515-111515 被引量:3
标识
DOI:10.1016/j.asoc.2024.111515
摘要

Aiming at the problem of insufficient generalization of fault detection in traditional machine learning, an SDN controller fault detection method based on unsupervised transfer learning is proposed. The method mainly includes two parts. (1) A Gaussian mixture variational autoencoder based on the autoregressive flow is proposed. First, the encoder and decoder of variational autocoding are improved with gated recurrent units, and the improved variational autocoding can process time series data. Secondly, the gated recurrent unit is improved by using the gravitational search algorithm, which speeds up the search of the weight of the gated recurrent unit. Further, considering that the latent space of the variational autoencoder is a single Gaussian distribution, and the complex data in reality is often too simple to be represented by a single Gaussian distribution. (2) Aiming at the problem of poor generalization of fault detection models in practical scenarios, a domain adaptive fault detection algorithm based on multi-kernel maximum mean difference and intra-class distance constraints is proposed. Map the features into the manifold space to eliminate the distortion of the features in the original space. After mapping, the distance between fields needs to be measured, and the maximum mean difference of a single kernel cannot determine which kernel function is more suitable for the current task in practical applications. Therefore, the maximum mean difference based on multi-core is introduced to measure between the two fields. The experimental results show that the algorithm proposed improves the accuracy about 5% compared with the previous algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
材料生完成签到,获得积分10
4秒前
丘比特应助wu采纳,获得30
4秒前
共享精神应助zhaoyali采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
CAOHOU应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
CAOHOU应助科研通管家采纳,获得10
10秒前
CAOHOU应助科研通管家采纳,获得10
10秒前
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
姚奋斗完成签到,获得积分10
11秒前
12秒前
橙子完成签到,获得积分10
12秒前
wq完成签到 ,获得积分10
12秒前
李爱国应助超级野狼采纳,获得10
13秒前
黄任行完成签到,获得积分10
15秒前
16秒前
zhaoyali发布了新的文献求助10
18秒前
22秒前
lihongchi发布了新的文献求助10
22秒前
23秒前
一只大嵩鼠完成签到 ,获得积分10
26秒前
pay完成签到,获得积分10
27秒前
超级野狼发布了新的文献求助10
27秒前
27秒前
lulululululu发布了新的文献求助10
28秒前
wu完成签到,获得积分20
29秒前
30秒前
送你一颗流星完成签到,获得积分10
30秒前
wu发布了新的文献求助30
32秒前
32秒前
lulululululu完成签到,获得积分10
33秒前
dida完成签到,获得积分10
34秒前
kpzwov完成签到 ,获得积分10
34秒前
欣怡发布了新的文献求助10
35秒前
lihongchi完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754672
求助须知:如何正确求助?哪些是违规求助? 5488707
关于积分的说明 15380490
捐赠科研通 4893182
什么是DOI,文献DOI怎么找? 2631791
邀请新用户注册赠送积分活动 1579727
关于科研通互助平台的介绍 1535475