已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An adaptive fault detection model based on variational auto-encoders and unsupervised transfer learning

自编码 计算机科学 算法 核(代数) 高斯函数 人工智能 高斯分布 模式识别(心理学) 数学 深度学习 量子力学 组合数学 物理
作者
Fengjun Shang,fengyin sun,Jiayu Wen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:157: 111515-111515 被引量:1
标识
DOI:10.1016/j.asoc.2024.111515
摘要

Aiming at the problem of insufficient generalization of fault detection in traditional machine learning, an SDN controller fault detection method based on unsupervised transfer learning is proposed. The method mainly includes two parts. (1) A Gaussian mixture variational autoencoder based on the autoregressive flow is proposed. First, the encoder and decoder of variational autocoding are improved with gated recurrent units, and the improved variational autocoding can process time series data. Secondly, the gated recurrent unit is improved by using the gravitational search algorithm, which speeds up the search of the weight of the gated recurrent unit. Further, considering that the latent space of the variational autoencoder is a single Gaussian distribution, and the complex data in reality is often too simple to be represented by a single Gaussian distribution. (2) Aiming at the problem of poor generalization of fault detection models in practical scenarios, a domain adaptive fault detection algorithm based on multi-kernel maximum mean difference and intra-class distance constraints is proposed. Map the features into the manifold space to eliminate the distortion of the features in the original space. After mapping, the distance between fields needs to be measured, and the maximum mean difference of a single kernel cannot determine which kernel function is more suitable for the current task in practical applications. Therefore, the maximum mean difference based on multi-core is introduced to measure between the two fields. The experimental results show that the algorithm proposed improves the accuracy about 5% compared with the previous algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
点一个随机昵称完成签到 ,获得积分10
1秒前
鲤鱼雪一完成签到,获得积分10
2秒前
Owen应助chrispaul采纳,获得10
2秒前
3秒前
岸在海的深处完成签到 ,获得积分10
4秒前
4秒前
大鱼发布了新的文献求助10
7秒前
muqianyaowanan完成签到,获得积分10
7秒前
陶醉无敌发布了新的文献求助10
7秒前
古铜完成签到 ,获得积分10
9秒前
qmx完成签到,获得积分20
11秒前
14秒前
甜蜜代双完成签到 ,获得积分10
15秒前
15秒前
youngyang完成签到 ,获得积分10
16秒前
华仔应助陶醉无敌采纳,获得10
17秒前
19秒前
FF完成签到 ,获得积分10
19秒前
qi完成签到 ,获得积分10
21秒前
不能随便完成签到,获得积分10
23秒前
热舞特完成签到,获得积分10
26秒前
27秒前
29秒前
古凊完成签到 ,获得积分10
30秒前
小丿丫丿丫完成签到 ,获得积分10
30秒前
WYJ完成签到,获得积分10
31秒前
31秒前
科目三应助科研通管家采纳,获得10
31秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
脑洞疼应助科研通管家采纳,获得10
32秒前
所所应助科研通管家采纳,获得10
32秒前
热心冷亦完成签到,获得积分10
32秒前
lingxi发布了新的文献求助10
32秒前
侠客完成签到 ,获得积分10
33秒前
wisher完成签到 ,获得积分10
33秒前
沧海云完成签到 ,获得积分10
33秒前
35秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Free Will in the Flesh 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081480
求助须知:如何正确求助?哪些是违规求助? 2734243
关于积分的说明 7532236
捐赠科研通 2383625
什么是DOI,文献DOI怎么找? 1264019
科研通“疑难数据库(出版商)”最低求助积分说明 612456
版权声明 597577