An adaptive fault detection model based on variational auto-encoders and unsupervised transfer learning

自编码 计算机科学 算法 核(代数) 高斯函数 人工智能 高斯分布 模式识别(心理学) 数学 深度学习 量子力学 组合数学 物理
作者
Fengjun Shang,fengyin sun,Jiayu Wen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:157: 111515-111515 被引量:3
标识
DOI:10.1016/j.asoc.2024.111515
摘要

Aiming at the problem of insufficient generalization of fault detection in traditional machine learning, an SDN controller fault detection method based on unsupervised transfer learning is proposed. The method mainly includes two parts. (1) A Gaussian mixture variational autoencoder based on the autoregressive flow is proposed. First, the encoder and decoder of variational autocoding are improved with gated recurrent units, and the improved variational autocoding can process time series data. Secondly, the gated recurrent unit is improved by using the gravitational search algorithm, which speeds up the search of the weight of the gated recurrent unit. Further, considering that the latent space of the variational autoencoder is a single Gaussian distribution, and the complex data in reality is often too simple to be represented by a single Gaussian distribution. (2) Aiming at the problem of poor generalization of fault detection models in practical scenarios, a domain adaptive fault detection algorithm based on multi-kernel maximum mean difference and intra-class distance constraints is proposed. Map the features into the manifold space to eliminate the distortion of the features in the original space. After mapping, the distance between fields needs to be measured, and the maximum mean difference of a single kernel cannot determine which kernel function is more suitable for the current task in practical applications. Therefore, the maximum mean difference based on multi-core is introduced to measure between the two fields. The experimental results show that the algorithm proposed improves the accuracy about 5% compared with the previous algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助xiaoxiaoshu采纳,获得10
刚刚
刚刚
cuihao完成签到,获得积分10
1秒前
XRQ应助song采纳,获得20
2秒前
寒冷的奇异果完成签到,获得积分10
2秒前
领导范儿应助小白采纳,获得10
2秒前
2秒前
lsl发布了新的文献求助10
2秒前
友好白凡发布了新的文献求助10
2秒前
丰富无色完成签到,获得积分10
3秒前
科研通AI6应助郑zz采纳,获得10
3秒前
4秒前
zhaopen完成签到,获得积分10
4秒前
万能图书馆应助lyt采纳,获得10
4秒前
4秒前
迷人的小蜜蜂完成签到 ,获得积分10
6秒前
6秒前
6秒前
酷波er应助拒绝去偏旁采纳,获得10
6秒前
7秒前
7秒前
7秒前
8秒前
小解完成签到 ,获得积分10
8秒前
8秒前
圈圈完成签到,获得积分10
8秒前
刘小文完成签到 ,获得积分10
8秒前
科研通AI6应助小可采纳,获得10
9秒前
9秒前
mix发布了新的文献求助10
9秒前
bkagyin应助小马采纳,获得10
10秒前
理理理理完成签到 ,获得积分10
10秒前
kk完成签到,获得积分10
10秒前
丢丢爱学习完成签到,获得积分20
10秒前
可爱的函函应助辣条采纳,获得10
10秒前
wanci应助Lemon采纳,获得30
10秒前
Drn发布了新的文献求助10
11秒前
12秒前
Orange应助flysky120采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257965
求助须知:如何正确求助?哪些是违规求助? 4419974
关于积分的说明 13758480
捐赠科研通 4293444
什么是DOI,文献DOI怎么找? 2355931
邀请新用户注册赠送积分活动 1352389
关于科研通互助平台的介绍 1313159