A robust feature wavelength extraction strategy for hyperspectral information:Three cases of potato quality evaluation

高光谱成像 模式识别(心理学) 质量(理念) 人工智能 计算机科学 萃取(化学) 特征(语言学) 色谱法 化学 物理 语言学 哲学 量子力学
作者
Linge Guo,Yong Yin,Yunxia Yuan,Huichun Yu
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:200: 110346-110346 被引量:2
标识
DOI:10.1016/j.microc.2024.110346
摘要

Because the existing feature wavelength extraction methods for hyperspectral information are only for some specific property of sample, which has some limitations, a feature wavelength extraction strategy with generalization and robustness is proposed. Namely, a part of the same or similar feature wavelengths are extracted by Wilks Λ statistic coupled with principal component analysis from hyperspectral information of different tested samples, and another part are extracted by partial least squares regression coefficient coupled with texture information. And then the two part of feature wavelengths can be integrated together to form the final feature wavelengths that represent the comprehensive properties of these tested samples. Take potato as the research object, and according to this feature wavelength extraction strategy, 8 feature wavelengths applicable to different potato samples were extracted, and three quality analysis cases were successfully implemented: the variety identification model, quality grade detection model and VC content prediction model. The results show that, based on the 8 feature wavelengths extracted by this strategy, the correction rate of the variety identification is 100 %; and the correction rate of the quality grading is above 92 %; and the R2P of the VC content prediction is 0.9715, which shows that the extracted feature wavelengths can effectively represent the different qualities of potato, and has robustness and generalization. This also provides a reference for the study of feature wavelength extraction methods of other agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hai完成签到,获得积分10
刚刚
小姚在忙完成签到,获得积分10
1秒前
LIUY发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助150
3秒前
4秒前
大大的寄吧完成签到,获得积分10
4秒前
李富贵完成签到 ,获得积分10
4秒前
可爱的函函应助ze采纳,获得10
5秒前
好好的小林林完成签到,获得积分10
6秒前
6秒前
脑洞疼应助哥谭小怪兽采纳,获得10
6秒前
chestnut灬完成签到 ,获得积分10
7秒前
7秒前
克里斯蒂娜完成签到,获得积分10
9秒前
cloud完成签到,获得积分10
9秒前
10秒前
pp发布了新的文献求助10
11秒前
小寒发布了新的文献求助10
13秒前
alima关注了科研通微信公众号
13秒前
w婷完成签到 ,获得积分10
13秒前
13秒前
卷卷发布了新的文献求助10
14秒前
15秒前
16秒前
蓝桉完成签到 ,获得积分10
16秒前
16秒前
李健应助amier采纳,获得30
17秒前
迷路尔容发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助150
18秒前
充电宝应助zxy采纳,获得10
18秒前
果称完成签到,获得积分10
19秒前
蓝桉关注了科研通微信公众号
20秒前
20秒前
man完成签到 ,获得积分10
21秒前
叉叉茶完成签到,获得积分10
22秒前
22秒前
科研通AI6应助amier采纳,获得10
24秒前
Arueliano发布了新的文献求助10
26秒前
科研通AI6应助LIUY采纳,获得10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130168
求助须知:如何正确求助?哪些是违规求助? 4332482
关于积分的说明 13497794
捐赠科研通 4168934
什么是DOI,文献DOI怎么找? 2285368
邀请新用户注册赠送积分活动 1286331
关于科研通互助平台的介绍 1227284