Enabling one-step regeneration of LiBH4 with self-sustaining hydrogen in its spent fuel—one pathway to storing renewable hydrogen

再生(生物学) 可再生能源 氢燃料 氢气储存 废物管理 燃料电池 材料科学 环境科学 化学 化学工程 工程类 细胞生物学 生物 有机化学 电气工程
作者
Kang Chen,Mi‐Li Liu,Zhuoyin Peng,Hao Zhong,Lang Gan,Jincheng Huang,Jinmin Zhao,Hui Wang,Jiangwen Liu,Huaiyu Shao,Liuzhang Ouyang
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:987: 174209-174209
标识
DOI:10.1016/j.jallcom.2024.174209
摘要

LiBH4 (LB in short) with a hydrogen capacity as high as 18.5 wt% and a low molecular weight (21.78 g mol−1) is among the most promising candidates for the hydrogen-based economy. However, current major technologies in (re)generation of LB rely heavily on energy-intensive processes, which greatly prohibits practical scaling-up of applications. Here we report a sustainable and effective approach to (re)generate LB via converting renewable H+ in crystalline water into H-, achieving a desirable yield of ∼50%. This one-step synthesis method relies on the reaction between spent fuels, specifically LiBO2·xH2O, and Mg-based alloys to form LB under ambient atmosphere. Notably, our approach surpasses the efficiency of other conventional method, such as LiH-B-H2 and MgH2-LiBO2 systems, which not only bypasses the energy-intensive dehydration procedure of LiBO2·xH2O (∼470 ℃) but also eliminates the use of costly hydrides or high-pressure H2. Our findings indicate that Mg participated in the regeneration process prior to Al in Mg-Al alloys and [BH4]- is gradually evolved from other intermediate species [BHx(OH)4-x]- (x = 0, 1, 2, 3). By combining hydrogen release and efficient storage of hydrogen-rich substrate in a closed materials cycle, this study may shed light on a promising step toward application of renewable hydrogen in a fuel cell-based hydrogen economy.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
husky完成签到 ,获得积分10
2秒前
科研通AI6.1应助斑ban采纳,获得10
3秒前
沉静完成签到 ,获得积分10
5秒前
Julia完成签到 ,获得积分10
6秒前
含蓄冰蓝完成签到,获得积分10
6秒前
7秒前
7秒前
9秒前
圆彰七大完成签到 ,获得积分10
10秒前
含蓄冰蓝发布了新的文献求助10
11秒前
12秒前
yy完成签到,获得积分10
13秒前
快乐的小胖完成签到,获得积分10
15秒前
yy完成签到,获得积分10
17秒前
混合结构完成签到 ,获得积分10
19秒前
斑ban发布了新的文献求助10
19秒前
深情安青应助yy采纳,获得10
20秒前
22秒前
kid发布了新的文献求助10
27秒前
lizishu举报典雅的灵煌求助涉嫌违规
30秒前
temaxs完成签到 ,获得积分10
33秒前
华仔应助大胆夏兰采纳,获得10
34秒前
完美世界应助kid采纳,获得10
35秒前
凶狠的姚完成签到 ,获得积分10
35秒前
40秒前
44秒前
潇洒斑马完成签到 ,获得积分10
45秒前
rui完成签到 ,获得积分10
57秒前
57秒前
科研通AI2S应助美琦采纳,获得10
59秒前
光亮的睿渊完成签到 ,获得积分10
1分钟前
Forever完成签到 ,获得积分10
1分钟前
SSY完成签到 ,获得积分10
1分钟前
Dr.c发布了新的文献求助10
1分钟前
xiaosi完成签到 ,获得积分10
1分钟前
叮叮当当发布了新的文献求助200
1分钟前
科研通AI6.1应助Chengcheng采纳,获得10
1分钟前
TKTK发布了新的文献求助30
1分钟前
花泽秀完成签到,获得积分10
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847567
求助须知:如何正确求助?哪些是违规求助? 6227695
关于积分的说明 15620595
捐赠科研通 4964265
什么是DOI,文献DOI怎么找? 2676537
邀请新用户注册赠送积分活动 1621054
关于科研通互助平台的介绍 1576998