电热效应
化学
反铁电性
铁电性
钙钛矿(结构)
电场
偶极子
凝聚态物理
结晶学
材料科学
有机化学
光电子学
电介质
物理
量子力学
作者
Shiguo Han,Jie Bie,Wei Fa,Shuang Chen,Liwei Tang,Wuqian Guo,Haojie Xu,Yu Ma,Yi Liu,Xitao Liu,Zhihua Sun,Junhua Luo
摘要
Antiferroelectric materials with an electrocaloric effect (ECE) have been developed as promising candidates for solid-state refrigeration. Despite the great advances in positive ECE, reports on negative ECE remain quite scarce because of its elusive physical mechanism. Here, a giant negative ECE (maximum ΔS ∼ −33.3 J kg–1 K–1 with ΔT ∼ −11.7 K) is demonstrated near room temperature in organometallic perovskite, iBA2EA2Pb3I10 (1, where iBA = isobutylammonium and EA = ethylammonium), which is comparable to the greatest ECE effects reported so far. Moreover, the ECE efficiency ΔS/ΔE (∼1.85 J cm kg–1 K–1 kV–1) and ΔT/ΔE (∼0.65 K cm kV–1) are almost 2 orders of magnitude higher than those of classical inorganic ceramic ferroelectrics and organic polymers, such as BaTiO3, SrBi2Ta2O9, Hf1/2Zr1/2O2, and P(VDF-TrFE). As far as we know, this is the first report on negative ECE in organometallic hybrid perovskite ferroelectric. Our experimental measurement combined with the first-principles calculations reveals that electric field-induced antipolar to polar structural transformation results in a large change in dipolar ordering (from 6.5 to 45 μC/cm2 under the ΔE of 18 kV/cm) that is closely related to the entropy change, which plays a key role in generating such giant negative ECE. This discovery of field-induced negative ECE is unprecedented in organometallic perovskite, which sheds light on the exploration of next-generation refrigeration devices with high cooling efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI