Attention-based convolution neural network for magnetic tile surface defect classification and detection

判别式 计算机科学 卷积(计算机科学) 人工神经网络 特征(语言学) 卷积神经网络 人工智能 代表(政治) 模式识别(心理学) 机器学习 计算机视觉 语言学 政治 政治学 法学 哲学
作者
Ju Li,Kai Wang,Mengfan He,Luyao Ke,Heng Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:159: 111631-111631 被引量:4
标识
DOI:10.1016/j.asoc.2024.111631
摘要

Effectively identifying surface defects in magnetic tiles has proven to be highly challenging due to limited sample availability and external background interference, which also plays a crucial role in significantly influencing the lifespan and reliability of permanent magnet motors. To address these challenges, our study draws inspiration from a comprehensive analysis of the retinal attention mechanism and proposes three guiding criteria: multi-level resolution, localization of objects of interest, and identification of salient features. These criteria are utilized as foundational principles to enhance the representation learning capability of designed neural network structures through the incorporation of the retinal attention mechanism. Subsequently, based on these guiding criteria, we introduce a novel convolutional retinal attention block (CRAB) to learn discriminative and robust feature representations for magnetic tile surface defect classification and detection. The proposed CRAB comprises three modules: multi-resolution module (MRM), global attention aggregation module (GAAM), and local attention aggregation module (LAAM), designed to extract discriminative and robust features by refining meaningful information and suppressing redundant ones. Comprehensive experimental results across image classification and object detection tasks demonstrate that the proposed CRAB outperforms existing methods such as SE, ECA, and CBAM, and can effectively amplify the representation power across various backbone networks, including VGG-16, GoogLeNet, ResNet-18, and ResNet-50. An evaluation on surface defect classification and detection tasks for industrial magnetic tiles further shows that CRAB achieves accuracies of 99.50% and 96.98%, respectively. These results underscore the promising application prospects of the proposed method in detecting industrial surface defects amid expansive and inconsequential backgrounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
凉薄少年应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
bkagyin应助科研通管家采纳,获得30
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
凉薄少年应助科研通管家采纳,获得10
5秒前
彭于晏应助三重积分咖啡采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
916应助科研通管家采纳,获得30
5秒前
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
lj完成签到,获得积分10
6秒前
6秒前
ggappsong发布了新的文献求助10
6秒前
Lz0330发布了新的文献求助20
8秒前
huofuman发布了新的文献求助10
10秒前
10秒前
jasonlee发布了新的文献求助20
11秒前
量子星尘发布了新的文献求助100
11秒前
小橙子完成签到,获得积分10
11秒前
13秒前
ZEZE发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
胖头鱼发布了新的文献求助10
15秒前
Asurary完成签到 ,获得积分10
16秒前
17秒前
chun完成签到 ,获得积分10
18秒前
共享精神应助满意的龙猫采纳,获得30
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956621
求助须知:如何正确求助?哪些是违规求助? 3502685
关于积分的说明 11109755
捐赠科研通 3233502
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870676
科研通“疑难数据库(出版商)”最低求助积分说明 802143