Nicheformer: a foundation model for single-cell and spatial omics

基础(证据) 组学 计算生物学 计算机科学 生物 数据科学 地理 生物信息学 考古
作者
Anna C. Schaar,Alejandro Tejada-Lapuerta,Giovanni Palla,Robert M. Gutgesell,Lennard Halle,Mariia Minaeva,Larsen Vornholz,Leander Dony,Francesca Drummer,Mojtaba Bahrami,Fabian J. Theis
标识
DOI:10.1101/2024.04.15.589472
摘要

Tissue makeup and the corresponding orchestration of vital biological activities, ranging from development and differentiation to immune response and regeneration, rely fundamentally on the cellular microenvironment and the interactions between cells. Spatial single-cell genomics allows probing such interactions in an unbiased and, increasingly, scalable fashion. To learn a unified cell representation that accounts for local dependencies in the cellular microenvironment and the underlying cell interactions, we propose to generalize recent foundation modeling approaches for disassociated single-cell transcriptomics to the spatial omics setting. Our model, Nicheformer, is a transformer-based foundation model that combines human and mouse dissociated single-cell and targeted spatial transcriptomics data to learn a cellular representation useful for a large variety of downstream tasks. Nicheformer is pretrained on over 57 million dissociated and 53 million spatially resolved cells across 73 tissues from both human and mouse. Subsequently, the model is fine-tuned on spatial tasks for spatial omics data to decode spatially resolved cellular information. We demonstrate the usefulness of Nicheformer in both zero-shot-like as well as fine-tuning scenarios on a novel set of spatially-relevant downstream tasks such as spatial density prediction or niche and region label prediction. In particular, we show that Nicheformer enables the prediction of the spatial context of dissociated cells, allowing the transfer of rich spatial information to scRNA-seq datasets. We define a series of novel spatial prediction problems and observe consistent top performance of Nicheformer, demonstrating the advantage of the improved model capacity of the underlying transformer. Altogether, our large-scale resource of more than 110 million cells in a partial spatial context, together with the set of novel spatial learning tasks and the Nicheformer model itself, will pave the way for the next generation of machine-learning models for spatial single-cell analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
所所应助yf采纳,获得10
3秒前
3秒前
NexusExplorer应助wangxu采纳,获得10
5秒前
6秒前
无限的猕猴桃完成签到,获得积分10
6秒前
GU发布了新的文献求助10
6秒前
愉快天亦完成签到,获得积分10
7秒前
8秒前
8秒前
11秒前
ale完成签到,获得积分10
13秒前
13秒前
sxy发布了新的文献求助10
13秒前
14秒前
不安的靖完成签到,获得积分10
14秒前
14秒前
GU完成签到,获得积分10
15秒前
15秒前
雨淋沐风发布了新的文献求助10
20秒前
wangxu发布了新的文献求助10
20秒前
大力板栗发布了新的文献求助10
20秒前
务实的菓完成签到 ,获得积分10
21秒前
李大帅发布了新的文献求助10
21秒前
jimmyhui完成签到,获得积分10
21秒前
CodeCraft应助moyu123采纳,获得10
23秒前
张六六完成签到 ,获得积分10
23秒前
24秒前
雨淋沐风完成签到,获得积分10
26秒前
27秒前
英姑应助kyou采纳,获得10
27秒前
29秒前
boyka9418完成签到,获得积分20
30秒前
万能图书馆应助yuting采纳,获得10
30秒前
32秒前
yf发布了新的文献求助10
34秒前
李大帅完成签到,获得积分10
35秒前
Owen应助αβ采纳,获得10
37秒前
vvvvvv发布了新的文献求助10
38秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1100
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3116426
求助须知:如何正确求助?哪些是违规求助? 2766409
关于积分的说明 7686902
捐赠科研通 2421820
什么是DOI,文献DOI怎么找? 1285893
科研通“疑难数据库(出版商)”最低求助积分说明 620169
版权声明 599829