亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BiTGNN: Prediction of Drug-Target Interactions Based on Bidirectional Transformer and Graph Neural Network on Heterogeneous Graph

图形 人工神经网络 计算机科学 变压器 人工智能 数学 理论计算机科学 物理 电压 量子力学
作者
Qingqian Zhang,Changxiang He,Xiaofei Qin,Peisheng Yang,Junyang Kong,Xueliang Li,Die Li
出处
期刊:International Journal of Biomathematics [World Scientific]
标识
DOI:10.1142/s1793524524500256
摘要

Drug–target interaction (DTI) is a widely explored topic in the field of bioinformatics and plays a pivotal role in drug discovery. However, the traditional bio-experimental process of drug–target interaction identification requires a large investment of time and labor. To address this challenge, graph neural network (GNN) approaches in deep learning are becoming a prominent trend in the field of DTI research, which is characterized by multimodal processing of data, feature learning and interpretability in DTI. Nevertheless, some methods are still limited by homogeneous graphs and single features. To address the problems, we mechanistically analyze graph convolutional neural networks (GCNs) and graph attentional neural networks (GATs) to propose a new model for the prediction of drug–target interactions using graph neural networks named BiTGNN [Bidirectional Transformer (Bi-Transformer)–graph neural network]. The method first establishes drug–target pairs through the pseudo-position specificity scoring matrix (PsePSSM) and drug fingerprint data, and constructs a heterogeneous network by utilizing the relationship between the drug and the target. Then, the computational extraction of drug and target attributes is performed using GCNs and GATs for the purpose of model information flow extension and graph information enhancement. We collect interaction data using the proposed Bi-Transformer architecture, in which we design a bidirectional cross-attention mechanism for calculating the effects of drug–target interactions for realistic biological interaction simulations. Finally, a feed-forward neural network is used to obtain the feature matrices of the drug and the target, and DTI prediction is performed by fusing the two feature matrices. The Enzyme, Ion Channel (IC), G Protein-coupled Receptor (GPCR) and Nuclear Receptor (NR) datasets are used in the experiments, and compared with several existing mainstream models, our model outperforms in Area Under the ROC Curve (AUC), Specificity, Accuracy and the metric Area Under the Precision–Recall Curve (AUPR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火火完成签到 ,获得积分10
26秒前
1分钟前
1分钟前
奋斗的杰发布了新的文献求助10
1分钟前
krajicek完成签到,获得积分10
1分钟前
2分钟前
TYJ10002发布了新的文献求助10
2分钟前
2分钟前
chiyudoubao发布了新的文献求助10
2分钟前
阳阳阳完成签到 ,获得积分10
3分钟前
3分钟前
搞钱发布了新的文献求助10
4分钟前
4分钟前
搞钱完成签到,获得积分10
4分钟前
lisasaguan完成签到,获得积分10
4分钟前
RED发布了新的文献求助10
4分钟前
4分钟前
634301059发布了新的文献求助20
4分钟前
4分钟前
yaoyao发布了新的文献求助10
4分钟前
乐乐应助yaoyao采纳,获得10
4分钟前
ktw完成签到,获得积分10
4分钟前
hahahan完成签到 ,获得积分10
5分钟前
跳跃的谷雪完成签到 ,获得积分10
5分钟前
9527z完成签到,获得积分10
6分钟前
LouieHuang完成签到,获得积分10
7分钟前
招水若离完成签到,获得积分10
7分钟前
可爱的函函应助奋斗的杰采纳,获得10
7分钟前
lkk183完成签到 ,获得积分10
8分钟前
9分钟前
yaoyao发布了新的文献求助10
9分钟前
9分钟前
奋斗的杰发布了新的文献求助10
9分钟前
科研通AI2S应助奋斗的杰采纳,获得10
10分钟前
CC完成签到 ,获得积分10
10分钟前
11分钟前
Nancy0818完成签到 ,获得积分10
11分钟前
不去明知山完成签到 ,获得积分10
11分钟前
kitty完成签到,获得积分10
11分钟前
feiCheung完成签到 ,获得积分10
12分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162323
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899707
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316528
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142