亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BiTGNN: Prediction of drug–target interactions based on bidirectional transformer and graph neural network on heterogeneous graph

可解释性 图形 人工神经网络 计算机科学 机器学习 药物靶点 人工智能 理论计算机科学 医学 药理学
作者
Qingqian Zhang,Changxiang He,Xiaofei Qin,Peisheng Yang,Junyang Kong,Yaping Mao,Die Li
出处
期刊:International Journal of Biomathematics [World Scientific]
标识
DOI:10.1142/s1793524524500256
摘要

Drug–target interaction (DTI) is a widely explored topic in the field of bioinformatics and plays a pivotal role in drug discovery. However, the traditional bio-experimental process of drug–target interaction identification requires a large investment of time and labor. To address this challenge, graph neural network (GNN) approaches in deep learning are becoming a prominent trend in the field of DTI research, which is characterized by multimodal processing of data, feature learning and interpretability in DTI. Nevertheless, some methods are still limited by homogeneous graphs and single features. To address the problems, we mechanistically analyze graph convolutional neural networks (GCNs) and graph attentional neural networks (GATs) to propose a new model for the prediction of drug–target interactions using graph neural networks named BiTGNN [Bidirectional Transformer (Bi-Transformer)–graph neural network]. The method first establishes drug–target pairs through the pseudo-position specificity scoring matrix (PsePSSM) and drug fingerprint data, and constructs a heterogeneous network by utilizing the relationship between the drug and the target. Then, the computational extraction of drug and target attributes is performed using GCNs and GATs for the purpose of model information flow extension and graph information enhancement. We collect interaction data using the proposed Bi-Transformer architecture, in which we design a bidirectional cross-attention mechanism for calculating the effects of drug–target interactions for realistic biological interaction simulations. Finally, a feed-forward neural network is used to obtain the feature matrices of the drug and the target, and DTI prediction is performed by fusing the two feature matrices. The Enzyme, Ion Channel (IC), G Protein-coupled Receptor (GPCR) and Nuclear Receptor (NR) datasets are used in the experiments, and compared with several existing mainstream models, our model outperforms in Area Under the ROC Curve (AUC), Specificity, Accuracy and the metric Area Under the Precision–Recall Curve (AUPR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟消云散发布了新的文献求助10
5秒前
5秒前
8秒前
阿甘发布了新的文献求助10
13秒前
打打应助顶刊刺客cc采纳,获得10
14秒前
25秒前
49秒前
1分钟前
1分钟前
1分钟前
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
1分钟前
Huzhu应助科研通管家采纳,获得10
1分钟前
1分钟前
满意的伊完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Alimove发布了新的文献求助10
2分钟前
大模型应助Alimove采纳,获得30
2分钟前
FashionBoy应助ZBQ采纳,获得10
3分钟前
浮游应助zing采纳,获得10
3分钟前
情怀应助爱妍采纳,获得10
3分钟前
3分钟前
ZBQ发布了新的文献求助10
3分钟前
3分钟前
3分钟前
爱妍发布了新的文献求助10
3分钟前
3分钟前
3分钟前
爱妍完成签到,获得积分20
3分钟前
彭于晏应助study采纳,获得10
3分钟前
3分钟前
study完成签到,获得积分10
4分钟前
4分钟前
可爱的函函应助study采纳,获得10
4分钟前
4分钟前
study发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488561
求助须知:如何正确求助?哪些是违规求助? 4587391
关于积分的说明 14413838
捐赠科研通 4518759
什么是DOI,文献DOI怎么找? 2476074
邀请新用户注册赠送积分活动 1461541
关于科研通互助平台的介绍 1434505