BiTGNN: Prediction of Drug-Target Interactions Based on Bidirectional Transformer and Graph Neural Network on Heterogeneous Graph

图形 人工神经网络 计算机科学 变压器 人工智能 数学 理论计算机科学 物理 电压 量子力学
作者
Qingqian Zhang,Changxiang He,Xiaofei Qin,Peisheng Yang,Junyang Kong,Xueliang Li,Die Li
出处
期刊:International Journal of Biomathematics [World Scientific]
标识
DOI:10.1142/s1793524524500256
摘要

Drug–target interaction (DTI) is a widely explored topic in the field of bioinformatics and plays a pivotal role in drug discovery. However, the traditional bio-experimental process of drug–target interaction identification requires a large investment of time and labor. To address this challenge, graph neural network (GNN) approaches in deep learning are becoming a prominent trend in the field of DTI research, which is characterized by multimodal processing of data, feature learning and interpretability in DTI. Nevertheless, some methods are still limited by homogeneous graphs and single features. To address the problems, we mechanistically analyze graph convolutional neural networks (GCNs) and graph attentional neural networks (GATs) to propose a new model for the prediction of drug–target interactions using graph neural networks named BiTGNN [Bidirectional Transformer (Bi-Transformer)–graph neural network]. The method first establishes drug–target pairs through the pseudo-position specificity scoring matrix (PsePSSM) and drug fingerprint data, and constructs a heterogeneous network by utilizing the relationship between the drug and the target. Then, the computational extraction of drug and target attributes is performed using GCNs and GATs for the purpose of model information flow extension and graph information enhancement. We collect interaction data using the proposed Bi-Transformer architecture, in which we design a bidirectional cross-attention mechanism for calculating the effects of drug–target interactions for realistic biological interaction simulations. Finally, a feed-forward neural network is used to obtain the feature matrices of the drug and the target, and DTI prediction is performed by fusing the two feature matrices. The Enzyme, Ion Channel (IC), G Protein-coupled Receptor (GPCR) and Nuclear Receptor (NR) datasets are used in the experiments, and compared with several existing mainstream models, our model outperforms in Area Under the ROC Curve (AUC), Specificity, Accuracy and the metric Area Under the Precision–Recall Curve (AUPR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zyb发布了新的文献求助10
刚刚
乐乐应助橙色采纳,获得10
刚刚
zzzz应助晴烟ZYM采纳,获得30
1秒前
锥子完成签到,获得积分10
1秒前
2秒前
叶千一夜完成签到,获得积分10
3秒前
3秒前
rainbow发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
6秒前
游一发布了新的文献求助10
6秒前
1111发布了新的文献求助10
7秒前
科研通AI5应助络绎采纳,获得10
7秒前
7秒前
oldblack发布了新的文献求助10
7秒前
帅哥吴克发布了新的文献求助20
8秒前
丘比特应助asdfghjkl采纳,获得10
8秒前
坏坏的快乐完成签到,获得积分10
8秒前
欣喜的秋灵完成签到,获得积分10
8秒前
FashionBoy应助wys采纳,获得10
9秒前
姐姐完成签到,获得积分20
9秒前
1177发布了新的文献求助10
10秒前
JingyuHuang发布了新的文献求助10
10秒前
zm发布了新的文献求助10
10秒前
11秒前
chenhoe1212完成签到,获得积分10
12秒前
彭于晏应助tanglu采纳,获得10
12秒前
weng完成签到,获得积分10
12秒前
Zjx发布了新的文献求助10
13秒前
jenningseastera应助呐呐采纳,获得10
13秒前
Jasper应助喜悦的秋柔采纳,获得10
15秒前
kksk发布了新的文献求助20
15秒前
fanfan完成签到 ,获得积分10
15秒前
kk完成签到,获得积分10
15秒前
caltrate515完成签到,获得积分10
16秒前
EED关闭了EED文献求助
19秒前
充电宝应助caltrate515采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496