作者
Feng Jin,Junlong Piao,Shihao Miao,Weikang Che,Xiang Li,Xuebin Li,Tatsuhiko Shiraiwa,Tomoyuki Tanaka,Kazuki Taniyoshi,Shuang Hua,Yu Lan
摘要
Abstract Biochar application can alleviate the adverse effects of saline-alkali stress on crops. However, the long-term effects of one-off biochar application on soil physicochemical properties, salt concentration, nutrient availability, soil enzyme activities, and rice yield under highly saline-alkali paddy soils remain unclear. Here, a 6-year paddy field study was conducted in a saline-alkali paddy field using two nitrogen application levels (0 and 225 kg ha −1 ) and four biochar application rates [0 (T0), 1.5% (T1.5), 3.0% (T3.0), and 4.5% (T4.5) biochar, w/w]. The results showed that compared with T0, the bulk density (BD) under T1.5, T3.0, and T4.5 treatments significantly decreased by 11.21%, 16.33%, and 25.57%, while total porosity (Tp) and saturated hydraulic conductivity ( Ks ) increased by 19.15–27.34% and 3217.78–5539.83%, respectively. Biochar consistently improved soil macro-aggregates, mean weight diameter (MWD), and the percentage of water-stable aggregates (PWSA) over the years. Additionally, one-off application of biochar continuously reduced the soil Na + concentration, Na + /K + ratio, Na + /Ca 2+ ratio, saturated paste extract (ECe), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SARe). However, it reduced the pH in 2021 and 2022 only. It enhanced the concentration of K + , Ca 2+ , Mg 2+ , and cation exchange capacity (CEC) over the 6-year study, indicating its longer-term positive impact. Furthermore, the one-off biochar application, especially under high application rate treatments (T3.0 and T4.5), significantly and continuously improved nutrient availability and soil enzyme activities. However, alkali-hydrolysable nitrogen (AN) decreased in the initial year of biochar application. The grain yield of T1.5, T3.0, and T4.5 surpassed that of T0 by 116.38%, 141.24%, and 145.20%, respectively. Notably, the rice yield reached its peak with the treatment of 3.0% (w/w) in all 6 years of study period. These findings offered new perspectives on repairing and improving soil quality and production ability of highly saline-alkali paddy soils. Graphical Abstract