社会经济地位
分类
潜在Dirichlet分配
合并(业务)
城市固体废物
宏
宏观层面
区域科学
环境规划
环境经济学
地理
业务
工程类
计算机科学
经济
环境卫生
主题模型
废物管理
医学
经济体制
会计
人工智能
自然语言处理
程序设计语言
人口
作者
Zhibo Zhang,J Wang,Jiuwei Li,Yao Wang,Ke Yin,Xunchang Fei
标识
DOI:10.1016/j.wasman.2024.04.028
摘要
The research pertaining to solid waste is undergoing extensive advancement, thereby necessitating a consolidation and analysis of its research trajectories. The existing biblio-studies on solid waste research (SWR) lack thorough analyses of the factors influencing its trends. This article presents an innovative categorization framework that categorizes publications from six SWR journals utilizing Source Latent Dirichlet Allocation. First analyse changes in publication numbers across main categories, subcategories, journals, and regions, providing a macro-level study of SWR. Temporal analysis of keywords supplements a micro-level study of SWR, which highlights that emerging technologies with low Technology Readiness Level receive significant attention, while studies on widespread technologies are diminishing. Additionally, this study demonstrates the substantial influence of socioeconomic factors and previous SWR publications on current and future SWR trends. Finally, the article confirms the impact of global events on SWR trends by examining the structural breakpoints of SWR and their correlation with global events.
科研通智能强力驱动
Strongly Powered by AbleSci AI