Evaluation of a machine-learning model based on laboratory parameters for the prediction of acute leukaemia subtypes: a multicentre model development and validation study in France

人工智能 计算机科学 机器学习 医学
作者
Vincent Alcazer,Grégoire Le Meur,Marie Roccon,Sabrina Barriere,Baptiste Le Calvez,Bouchra Badaoui,Agathe Spaeth,Olivier Kosmider,Nicolas Freynet,Marion Eveillard,Carolyne Croizier,Simon Chevalier,Pierre Sujobert
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:6 (5): e323-e333 被引量:7
标识
DOI:10.1016/s2589-7500(24)00044-x
摘要

BackgroundAcute leukaemias are life-threatening haematological cancers characterised by the infiltration of transformed immature haematopoietic cells in the blood and bone marrow. Prompt and accurate diagnosis of the three main acute leukaemia subtypes (ie acute lymphocytic leukaemia [ALL], acute myeloid leukaemia [AML], and acute promyelocytic leukaemia [APL]) is of utmost importance to guide initial treatment and prevent early mortality but requires cytological expertise that is not always available. We aimed to benchmark different machine-learning strategies using a custom variable selection algorithm to propose an extreme gradient boosting model to predict leukaemia subtypes on the basis of routine laboratory parameters.MethodsThis multicentre model development and validation study was conducted with data from six independent French university hospital databases. Patients aged 18 years or older diagnosed with AML, APL, or ALL in any one of these six hospital databases between March 1, 2012, and Dec 31, 2021, were recruited. 22 routine parameters were collected at the time of initial disease evaluation; variables with more than 25% of missing values in two datasets were not used for model training, leading to the final inclusion of 19 parameters. The performances of the final model were evaluated on internal testing and external validation sets with area under the receiver operating characteristic curves (AUCs), and clinically relevant cutoffs were chosen to guide clinical decision making. The final tool, Artificial Intelligence Prediction of Acute Leukemia (AI-PAL), was developed from this model.Findings1410 patients diagnosed with AML, APL, or ALL were included. Data quality control showed few missing values for each cohort, with the exception of uric acid and lactate dehydrogenase for the cohort from Hôpital Cochin. 679 patients from Hôpital Lyon Sud and Centre Hospitalier Universitaire de Clermont-Ferrand were split into the training (n=477) and internal testing (n=202) sets. 731 patients from the four other cohorts were used for external validation. Overall AUCs across all validation cohorts were 0·97 (95% CI 0·95–0·99) for APL, 0·90 (0·83–0·97) for ALL, and 0·89 (0·82–0·95) for AML. Cutoffs were then established on the overall cohort of 1410 patients to guide clinical decisions. Confident cutoffs showed two (0·14%) wrong predictions for ALL, four (0·28%) wrong predictions for APL, and three (0·21%) wrong predictions for AML. Use of the overall cutoff greatly reduced the number of missing predictions; diagnosis was proposed for 1375 (97·5%) of 1410 patients for each category, with only a slight increase in wrong predictions. The final model evaluation across both the internal testing and external validation sets showed accuracy of 99·5% for ALL diagnosis, 98·8% for AML diagnosis, and 99·7% for APL diagnosis in the confident model and accuracy of 87·9% for ALL diagnosis, 86·3% for AML diagnosis, and 96·1% for APL diagnosis in the overall model.InterpretationAI-PAL allowed for accurate diagnosis of the three main acute leukaemia subtypes. Based on ten simple laboratory parameters, its broad availability could help guide initial therapies in a context where cytological expertise is lacking, such as in low-income countries.FundingNone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lmx发布了新的文献求助10
刚刚
1秒前
3秒前
kdkfjaljk完成签到 ,获得积分10
3秒前
4秒前
雪白的听寒完成签到 ,获得积分10
4秒前
靓丽衫发布了新的文献求助10
6秒前
home完成签到,获得积分10
6秒前
xjn发布了新的文献求助10
6秒前
我想看文章完成签到,获得积分10
7秒前
ANANAN应助沉静皮带采纳,获得150
7秒前
海德堡完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
Aria发布了新的文献求助10
8秒前
庞扬完成签到,获得积分20
8秒前
9秒前
10秒前
好好学习完成签到,获得积分10
12秒前
Xiaoxiao应助66采纳,获得10
12秒前
12秒前
庞扬发布了新的文献求助10
13秒前
13秒前
src发布了新的文献求助10
13秒前
SciGPT应助落寞怜南采纳,获得10
14秒前
止咳糖浆发布了新的文献求助10
14秒前
one完成签到 ,获得积分10
14秒前
15秒前
刘书章完成签到,获得积分20
15秒前
坦率不惜完成签到,获得积分10
16秒前
南海姑娘发布了新的文献求助10
18秒前
18秒前
天天快乐应助闪闪的以柳采纳,获得10
19秒前
Akim应助太阳采纳,获得10
19秒前
脆脆鲨鱼完成签到,获得积分10
19秒前
俏皮元容发布了新的文献求助10
20秒前
背后时光完成签到,获得积分20
20秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得30
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745698
求助须知:如何正确求助?哪些是违规求助? 3288663
关于积分的说明 10060052
捐赠科研通 3004935
什么是DOI,文献DOI怎么找? 1649958
邀请新用户注册赠送积分活动 785632
科研通“疑难数据库(出版商)”最低求助积分说明 751204