Evaluation of a machine-learning model based on laboratory parameters for the prediction of acute leukaemia subtypes: a multicentre model development and validation study in France

人工智能 计算机科学 机器学习 医学
作者
Vincent Alcazer,Grégoire Le Meur,Marie Roccon,Sabrina Barriere,Baptiste Le Calvez,Bouchra Badaoui,Agathe Spaeth,Olivier Kosmider,Nicolas Freynet,Marion Eveillard,Carolyne Croizier,Simon Chevalier,Pierre Sujobert
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:6 (5): e323-e333 被引量:3
标识
DOI:10.1016/s2589-7500(24)00044-x
摘要

BackgroundAcute leukaemias are life-threatening haematological cancers characterised by the infiltration of transformed immature haematopoietic cells in the blood and bone marrow. Prompt and accurate diagnosis of the three main acute leukaemia subtypes (ie acute lymphocytic leukaemia [ALL], acute myeloid leukaemia [AML], and acute promyelocytic leukaemia [APL]) is of utmost importance to guide initial treatment and prevent early mortality but requires cytological expertise that is not always available. We aimed to benchmark different machine-learning strategies using a custom variable selection algorithm to propose an extreme gradient boosting model to predict leukaemia subtypes on the basis of routine laboratory parameters.MethodsThis multicentre model development and validation study was conducted with data from six independent French university hospital databases. Patients aged 18 years or older diagnosed with AML, APL, or ALL in any one of these six hospital databases between March 1, 2012, and Dec 31, 2021, were recruited. 22 routine parameters were collected at the time of initial disease evaluation; variables with more than 25% of missing values in two datasets were not used for model training, leading to the final inclusion of 19 parameters. The performances of the final model were evaluated on internal testing and external validation sets with area under the receiver operating characteristic curves (AUCs), and clinically relevant cutoffs were chosen to guide clinical decision making. The final tool, Artificial Intelligence Prediction of Acute Leukemia (AI-PAL), was developed from this model.Findings1410 patients diagnosed with AML, APL, or ALL were included. Data quality control showed few missing values for each cohort, with the exception of uric acid and lactate dehydrogenase for the cohort from Hôpital Cochin. 679 patients from Hôpital Lyon Sud and Centre Hospitalier Universitaire de Clermont-Ferrand were split into the training (n=477) and internal testing (n=202) sets. 731 patients from the four other cohorts were used for external validation. Overall AUCs across all validation cohorts were 0·97 (95% CI 0·95–0·99) for APL, 0·90 (0·83–0·97) for ALL, and 0·89 (0·82–0·95) for AML. Cutoffs were then established on the overall cohort of 1410 patients to guide clinical decisions. Confident cutoffs showed two (0·14%) wrong predictions for ALL, four (0·28%) wrong predictions for APL, and three (0·21%) wrong predictions for AML. Use of the overall cutoff greatly reduced the number of missing predictions; diagnosis was proposed for 1375 (97·5%) of 1410 patients for each category, with only a slight increase in wrong predictions. The final model evaluation across both the internal testing and external validation sets showed accuracy of 99·5% for ALL diagnosis, 98·8% for AML diagnosis, and 99·7% for APL diagnosis in the confident model and accuracy of 87·9% for ALL diagnosis, 86·3% for AML diagnosis, and 96·1% for APL diagnosis in the overall model.InterpretationAI-PAL allowed for accurate diagnosis of the three main acute leukaemia subtypes. Based on ten simple laboratory parameters, its broad availability could help guide initial therapies in a context where cytological expertise is lacking, such as in low-income countries.FundingNone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sean完成签到 ,获得积分10
刚刚
Yoki完成签到,获得积分10
1秒前
2秒前
夏林完成签到,获得积分10
2秒前
申木完成签到 ,获得积分10
3秒前
活力的雁荷完成签到,获得积分10
5秒前
6秒前
livra1058完成签到,获得积分10
8秒前
在水一方应助十三州府采纳,获得10
10秒前
小王完成签到 ,获得积分10
14秒前
cong完成签到 ,获得积分10
16秒前
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
yanshenshen完成签到 ,获得积分0
20秒前
瞬间de回眸完成签到 ,获得积分10
20秒前
念与惜完成签到 ,获得积分10
21秒前
23秒前
司马绮山完成签到,获得积分10
25秒前
zfy发布了新的文献求助10
26秒前
天真的邴完成签到 ,获得积分10
28秒前
Snow完成签到 ,获得积分10
29秒前
深夜看文献的小刘完成签到,获得积分10
29秒前
ShujunOvO完成签到,获得积分10
29秒前
顾矜应助zfy采纳,获得10
40秒前
40秒前
42秒前
lewis发布了新的文献求助10
44秒前
从容的水壶完成签到,获得积分10
45秒前
等待的梦菲完成签到,获得积分20
48秒前
zfy完成签到,获得积分10
48秒前
lewis完成签到,获得积分10
51秒前
傲娇以晴完成签到 ,获得积分10
51秒前
良辰应助闪闪妍采纳,获得10
52秒前
Tia完成签到 ,获得积分10
56秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139684
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795749
捐赠科研通 2447017
什么是DOI,文献DOI怎么找? 1301553
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176