分割
人工智能
鉴定(生物学)
核(代数)
模式识别(心理学)
多核学习
计算机科学
机器学习
生物
数学
核方法
支持向量机
植物
组合数学
作者
David Dong,Koushik Nagasubramanian,Ruidong Wang,Ursula K. Frei,Talukder Z. Jubery,Thomas Lübberstedt,Baskar Ganapathysubramanian
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
日期:2023-01-27
标识
DOI:10.5281/zenodo.7576661
摘要
These are companion data of manuscript "Self-Supervised Maize Kernel Classification and Segmentation for Embryo Identification" that was submitted to Frontiers in Plant Science. The data is organized into three main folders: 'class_full_imgs', 'seg_full_imgs', and 'unlabeled'.
The 'class_full_imgs' folder contains labeled data used to train the classification model, which is divided into train, validation, and test subfolders. Each of these subfolders contains 'oriented' and 'non-oriented' images.
The 'seg_full_imgs' folder contains labeled data used to train the segmentation model. The 'InputImages' subfolder contains raw images, and the 'OutputImages' subfolder contains the segmented images.
The 'unlabeled' folder contains images without any labels. These images were used for self-supervised pretraining of classification and segmentation models.
科研通智能强力驱动
Strongly Powered by AbleSci AI