Developing Machine Learning Algorithms Incorporating Patient Reported Outcomes to Predict Disease Progression in Head and Neck Cancers

医学 头颈部 头颈部癌 疾病 机器学习 肿瘤科 算法 人工智能 内科学 外科 癌症 计算机科学
作者
Christopher M. K. L. Yao,Katrina Hueniken,Szu-Han Huang,C. Jillian Tsai,Andrew McPartlin,Ali Hosni,Andrew Hope,Geoffrey Liu,David P. Goldstein,Leo Tak-hung Chan,John R. de Almeida
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:118 (5): e46-e47
标识
DOI:10.1016/j.ijrobp.2024.01.103
摘要

Purpose/Objective(s) Patient reported outcome (PRO) is gaining traction for implementation into clinical practice within electronic medical record systems. Recent randomized controlled trials support standardized PRO-base monitoring in enhancing health-related quality of life, reducing emergency department use and improving overall survival. Here, we examined whether a validated head and neck cancer (HNC) specific PRO or general PRO can better predict disease progression using machine learning algorithms. Materials/Methods This was a retrospective analysis of a prospective observational study through the Comprehensive Translational Research Study of Head and Neck Tumors at our institution where baseline clinical, demographic and PROMs were collected between 2007 and 2018. Patients with a primary HNC, who had at least one MD Anderson Symptom Inventory (MDASI) or Edmonton Symptom Assessment Score (ESAS) questionnaire collected 3 months after curative intents treatment were included. Models were fit to predict disease progression three months following a post-treatment MDASI or ESAS questionnaire. Eight models were generated using supervised machine learning: least absolute shrinkage and selection operator (LASSO) logistic regression and random forest models. Predictive performances were assessed via area under the receiver-operating curve, computed with 10-fold cross-validation. Four of the models were based on first post-treatment PRO, while the others on change over time in PRO scores. Relative variable importance was computed with average decrease in out-of-bag prediction accuracy of each tree. Results We included 1302 HNC patients, of whom 527 (40%) were HPV-positive, and 556 (43%) were from oropharynx. Disease progression occurred in 123 (9.5%) of HNC patients. With baseline post-treatment MDASI, our best random forest model demonstrated an area under the curve (AUC) approximating 0.675. The top three variables were pain, speech and dry mouth. When comparing change in MDASI scores over time, random forest models again performed the best, with an AUC of 0.676. The top three variables were pain, choking and fatigue. Models incorporating MDASI were more predictive for disease progression than ESAS. Conclusion Machine-learning approaches on head and neck cancer specific patient reported outcomes can identify patients at high risk for disease progression with high sensitivity. Future work will involve evaluating whether implementing predictive models using MDASI with targeted clinical interventions can improve clinical outcomes. Patient reported outcome (PRO) is gaining traction for implementation into clinical practice within electronic medical record systems. Recent randomized controlled trials support standardized PRO-base monitoring in enhancing health-related quality of life, reducing emergency department use and improving overall survival. Here, we examined whether a validated head and neck cancer (HNC) specific PRO or general PRO can better predict disease progression using machine learning algorithms. This was a retrospective analysis of a prospective observational study through the Comprehensive Translational Research Study of Head and Neck Tumors at our institution where baseline clinical, demographic and PROMs were collected between 2007 and 2018. Patients with a primary HNC, who had at least one MD Anderson Symptom Inventory (MDASI) or Edmonton Symptom Assessment Score (ESAS) questionnaire collected 3 months after curative intents treatment were included. Models were fit to predict disease progression three months following a post-treatment MDASI or ESAS questionnaire. Eight models were generated using supervised machine learning: least absolute shrinkage and selection operator (LASSO) logistic regression and random forest models. Predictive performances were assessed via area under the receiver-operating curve, computed with 10-fold cross-validation. Four of the models were based on first post-treatment PRO, while the others on change over time in PRO scores. Relative variable importance was computed with average decrease in out-of-bag prediction accuracy of each tree. We included 1302 HNC patients, of whom 527 (40%) were HPV-positive, and 556 (43%) were from oropharynx. Disease progression occurred in 123 (9.5%) of HNC patients. With baseline post-treatment MDASI, our best random forest model demonstrated an area under the curve (AUC) approximating 0.675. The top three variables were pain, speech and dry mouth. When comparing change in MDASI scores over time, random forest models again performed the best, with an AUC of 0.676. The top three variables were pain, choking and fatigue. Models incorporating MDASI were more predictive for disease progression than ESAS. Machine-learning approaches on head and neck cancer specific patient reported outcomes can identify patients at high risk for disease progression with high sensitivity. Future work will involve evaluating whether implementing predictive models using MDASI with targeted clinical interventions can improve clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zz完成签到,获得积分10
刚刚
Prandtl完成签到 ,获得积分10
2秒前
3秒前
zfzf0422完成签到 ,获得积分10
4秒前
上官若男应助jackie采纳,获得10
4秒前
4秒前
我是站长才怪应助Benliu采纳,获得20
5秒前
5秒前
zh20130完成签到,获得积分10
5秒前
5秒前
TT发布了新的文献求助10
6秒前
Star1983发布了新的文献求助10
6秒前
研友_LXdbaL完成签到,获得积分10
7秒前
8秒前
在水一方应助66采纳,获得10
9秒前
9秒前
9秒前
缘一发布了新的文献求助10
10秒前
junzilan发布了新的文献求助10
11秒前
CipherSage应助赖道之采纳,获得10
12秒前
ccc完成签到,获得积分10
12秒前
12秒前
12秒前
15秒前
Pauline完成签到,获得积分10
17秒前
jackie发布了新的文献求助10
17秒前
笨笨摇伽发布了新的文献求助10
19秒前
科目三应助皓月繁星采纳,获得10
19秒前
tomato完成签到,获得积分20
21秒前
CodeCraft应助缘一采纳,获得10
22秒前
小二郎应助刘铭晨采纳,获得10
22秒前
22秒前
大个应助风雨1210采纳,获得10
22秒前
一壶清酒完成签到,获得积分10
22秒前
23秒前
tomato发布了新的文献求助30
24秒前
陈莹发布了新的文献求助10
25秒前
26秒前
26秒前
小狗同志006完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808