Attention-Aware Non-Rigid Image Registration for Accelerated MR Imaging

图像配准 计算机视觉 人工智能 计算机科学 医学影像学 迭代重建 图像(数学)
作者
Aya Ghoul,Jiazhen Pan,Andreas Lingg,Jens Kübler,Patrick Krumm,Kerstin Hammernik,Daniel Rueckert,Sergios Gatidis,Thomas Küstner
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 3013-3026 被引量:11
标识
DOI:10.1109/tmi.2024.3385024
摘要

Accurate motion estimation at high acceleration factors enables rapid motion-compensated reconstruction in Magnetic Resonance Imaging (MRI) without compromising the diagnostic image quality. In this work, we introduce an attention-aware deep learning-based framework that can perform non-rigid pairwise registration for fully sampled and accelerated MRI. We extract local visual representations to build similarity maps between the registered image pairs at multiple resolution levels and additionally leverage long-range contextual information using a transformer-based module to alleviate ambiguities in the presence of artifacts caused by undersampling. We combine local and global dependencies to perform simultaneous coarse and fine motion estimation. The proposed method was evaluated on in-house acquired fully sampled and accelerated data of 101 patients and 62 healthy subjects undergoing cardiac and thoracic MRI. The impact of motion estimation accuracy on the downstream task of motion-compensated reconstruction was analyzed. We demonstrate that our model derives reliable and consistent motion fields across different sampling trajectories (Cartesian and radial) and acceleration factors of up to 16x for cardiac motion and 30x for respiratory motion and achieves superior image quality in motion-compensated reconstruction qualitatively and quantitatively compared to conventional and recent deep learning-based approaches. The code is publicly available at https://github.com/lab-midas/GMARAFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实思卉完成签到,获得积分20
刚刚
沛琪完成签到,获得积分10
刚刚
张7发布了新的文献求助10
刚刚
1秒前
小二郎应助蕉太狼采纳,获得10
2秒前
如意艳血完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
务实思卉发布了新的文献求助10
3秒前
李健应助张7采纳,获得10
4秒前
k_1发布了新的文献求助10
5秒前
5秒前
salan完成签到,获得积分0
5秒前
6秒前
6秒前
不败完成签到,获得积分10
6秒前
凌鸣发布了新的文献求助10
6秒前
8秒前
JamesPei应助脑三问采纳,获得10
8秒前
8秒前
Lucas应助虾仁不眨眼采纳,获得10
9秒前
橘子完成签到,获得积分10
9秒前
9秒前
9秒前
Akim应助游标卡尺采纳,获得10
10秒前
科研通AI6应助儒雅的醉柳采纳,获得10
10秒前
花开富贵发布了新的文献求助10
11秒前
苏silence发布了新的文献求助10
11秒前
吴子涵发布了新的文献求助10
11秒前
11秒前
风清扬应助张昭蓉采纳,获得30
11秒前
12秒前
lele发布了新的文献求助10
12秒前
13秒前
Gloriauuu完成签到,获得积分20
13秒前
斯文败类应助3089ggf采纳,获得10
15秒前
迅速映容发布了新的文献求助10
15秒前
沟通亿心发布了新的文献求助10
15秒前
TN发布了新的文献求助10
16秒前
田様应助炙热龙猫采纳,获得10
16秒前
传奇3应助56采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578178
求助须知:如何正确求助?哪些是违规求助? 4663118
关于积分的说明 14744673
捐赠科研通 4603816
什么是DOI,文献DOI怎么找? 2526698
邀请新用户注册赠送积分活动 1496310
关于科研通互助平台的介绍 1465712