Attention-aware non-rigid image registration for accelerated MR imaging

图像配准 计算机视觉 人工智能 计算机科学 医学影像学 迭代重建 图像(数学)
作者
Aya Ghoul,Jiazhen Pan,Andreas Lingg,Jens Kübler,Patrick Krumm,Kerstin Hammernik,Daniel Rueckert,Sergios Gatidis,Thomas Küstner
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 3013-3026 被引量:3
标识
DOI:10.1109/tmi.2024.3385024
摘要

Accurate motion estimation at high acceleration factors enables rapid motion-compensated reconstruction in Magnetic Resonance imaging (MRI) without compromising the diagnostic image quality. In this work, we introduce an attention-aware deep learning-based framework that can perform non-rigid pairwise registration for fully sampled and accelerated MRI. We extract local visual representations to build similarity maps between the registered image pairs at multiple resolution levels and additionally leverage long-range contextual information using a transformer-based module to alleviate ambiguities in the presence of artifacts caused by undersampling. We combine local and global dependencies to perform simultaneous coarse and fine motion estimation. The proposed method was evaluated on in-house acquired fully sampled and accelerated data of 101 patients and 62 healthy subjects undergoing cardiac and thoracic MRI. The impact of motion estimation accuracy on the downstream task of motion-compensated reconstruction was analyzed. We demonstrate that our model derives reliable and consistent motion fields across different sampling trajectories (Cartesian and radial) and acceleration factors of up to 16x for cardiac motion and 30x for respiratory motion and achieves superior image quality in motion-compensated reconstruction qualitatively and quantitatively compared to conventional and recent deep learning-based approaches. The code is publicly available at https://github.com/lab-midas/GMARAFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wade2016发布了新的文献求助10
刚刚
wanci应助大脑洞少年采纳,获得10
1秒前
jiaoshaa完成签到,获得积分10
3秒前
4秒前
CXS完成签到,获得积分10
5秒前
榕树下完成签到,获得积分10
6秒前
桃大屁发布了新的文献求助10
6秒前
珈小羽完成签到,获得积分10
9秒前
9秒前
9秒前
jiaoshaa发布了新的文献求助10
11秒前
11秒前
12秒前
小葵完成签到,获得积分10
12秒前
科研通AI2S应助小倩倩加油采纳,获得10
13秒前
Leif应助兔兔sci采纳,获得10
14秒前
Voloid发布了新的文献求助10
14秒前
liuyan发布了新的文献求助10
14秒前
东东发布了新的文献求助10
16秒前
Zoeyz发布了新的文献求助10
17秒前
Voloid完成签到,获得积分10
19秒前
20秒前
21秒前
22秒前
tuanheqi应助萧水白采纳,获得100
23秒前
王哈完成签到,获得积分10
23秒前
王烨发布了新的文献求助10
24秒前
小马甲应助Brian采纳,获得10
25秒前
王企鹅发布了新的文献求助10
26秒前
可爱的函函应助Hehe采纳,获得10
26秒前
26秒前
28秒前
摘星012发布了新的文献求助10
28秒前
29秒前
30秒前
王企鹅完成签到,获得积分10
31秒前
32秒前
Zephyr发布了新的文献求助10
32秒前
33秒前
33秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613