Attention-aware non-rigid image registration for accelerated MR imaging

图像配准 计算机视觉 人工智能 计算机科学 医学影像学 迭代重建 图像(数学)
作者
Aya Ghoul,Jiazhen Pan,Andreas Lingg,Jens Kübler,Patrick Krumm,Kerstin Hammernik,Daniel Rueckert,Sergios Gatidis,Thomas Küstner
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 3013-3026 被引量:3
标识
DOI:10.1109/tmi.2024.3385024
摘要

Accurate motion estimation at high acceleration factors enables rapid motion-compensated reconstruction in Magnetic Resonance imaging (MRI) without compromising the diagnostic image quality. In this work, we introduce an attention-aware deep learning-based framework that can perform non-rigid pairwise registration for fully sampled and accelerated MRI. We extract local visual representations to build similarity maps between the registered image pairs at multiple resolution levels and additionally leverage long-range contextual information using a transformer-based module to alleviate ambiguities in the presence of artifacts caused by undersampling. We combine local and global dependencies to perform simultaneous coarse and fine motion estimation. The proposed method was evaluated on in-house acquired fully sampled and accelerated data of 101 patients and 62 healthy subjects undergoing cardiac and thoracic MRI. The impact of motion estimation accuracy on the downstream task of motion-compensated reconstruction was analyzed. We demonstrate that our model derives reliable and consistent motion fields across different sampling trajectories (Cartesian and radial) and acceleration factors of up to 16x for cardiac motion and 30x for respiratory motion and achieves superior image quality in motion-compensated reconstruction qualitatively and quantitatively compared to conventional and recent deep learning-based approaches. The code is publicly available at https://github.com/lab-midas/GMARAFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨完成签到 ,获得积分10
1秒前
yyz发布了新的文献求助10
2秒前
3秒前
欧耶发布了新的文献求助10
5秒前
YY张完成签到,获得积分20
5秒前
7秒前
7秒前
Joyce完成签到,获得积分10
8秒前
万能图书馆应助悦耳昊强采纳,获得10
9秒前
9秒前
天真的不尤完成签到 ,获得积分10
10秒前
悄悄睡觉完成签到 ,获得积分10
11秒前
小仙女发布了新的文献求助30
11秒前
小晓发布了新的文献求助10
11秒前
12秒前
领导范儿应助无限飞丹采纳,获得10
12秒前
美好的秋烟完成签到,获得积分20
13秒前
13秒前
幸福大白发布了新的文献求助30
14秒前
哒哒哒发布了新的文献求助10
15秒前
悦耳昊强完成签到,获得积分20
20秒前
打打应助顺利紫山采纳,获得10
21秒前
CR7应助ZONG采纳,获得20
22秒前
可爱的函函应助77采纳,获得10
22秒前
科研通AI2S应助李健采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
23秒前
大模型应助科研通管家采纳,获得30
23秒前
YamDaamCaa应助科研通管家采纳,获得30
23秒前
慕青应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
CAOHOU应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
24秒前
lll完成签到 ,获得积分10
25秒前
yar给迅速蜻蜓的求助进行了留言
25秒前
沉默的无施完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989450
求助须知:如何正确求助?哪些是违规求助? 3531621
关于积分的说明 11254315
捐赠科研通 3270207
什么是DOI,文献DOI怎么找? 1804928
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809176