Attention-aware non-rigid image registration for accelerated MR imaging

图像配准 计算机视觉 人工智能 计算机科学 医学影像学 迭代重建 图像(数学)
作者
Aya Ghoul,Jiazhen Pan,Andreas Lingg,Jens Kübler,Patrick Krumm,Kerstin Hammernik,Daniel Rueckert,Sergios Gatidis,Thomas Küstner
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 3013-3026 被引量:3
标识
DOI:10.1109/tmi.2024.3385024
摘要

Accurate motion estimation at high acceleration factors enables rapid motion-compensated reconstruction in Magnetic Resonance imaging (MRI) without compromising the diagnostic image quality. In this work, we introduce an attention-aware deep learning-based framework that can perform non-rigid pairwise registration for fully sampled and accelerated MRI. We extract local visual representations to build similarity maps between the registered image pairs at multiple resolution levels and additionally leverage long-range contextual information using a transformer-based module to alleviate ambiguities in the presence of artifacts caused by undersampling. We combine local and global dependencies to perform simultaneous coarse and fine motion estimation. The proposed method was evaluated on in-house acquired fully sampled and accelerated data of 101 patients and 62 healthy subjects undergoing cardiac and thoracic MRI. The impact of motion estimation accuracy on the downstream task of motion-compensated reconstruction was analyzed. We demonstrate that our model derives reliable and consistent motion fields across different sampling trajectories (Cartesian and radial) and acceleration factors of up to 16x for cardiac motion and 30x for respiratory motion and achieves superior image quality in motion-compensated reconstruction qualitatively and quantitatively compared to conventional and recent deep learning-based approaches. The code is publicly available at https://github.com/lab-midas/GMARAFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助XYN1采纳,获得10
2秒前
Bobo发布了新的文献求助60
2秒前
Valiant完成签到,获得积分10
2秒前
5秒前
6秒前
cindywu发布了新的文献求助10
7秒前
9秒前
9秒前
10秒前
kaoyikaoli发布了新的文献求助10
10秒前
Newt完成签到,获得积分10
10秒前
我不是财神完成签到 ,获得积分10
14秒前
yar给fishfun的求助进行了留言
14秒前
wanci应助薇薇采纳,获得10
14秒前
YYYZZX1发布了新的文献求助10
14秒前
湛湛发布了新的文献求助10
15秒前
奥特超曼应助刘芮采纳,获得10
15秒前
高挑的涛发布了新的文献求助10
16秒前
木光发布了新的文献求助10
16秒前
粘豆包完成签到,获得积分10
17秒前
今后应助noss采纳,获得30
18秒前
莫之玉完成签到 ,获得积分20
18秒前
平常的元蝶完成签到 ,获得积分10
18秒前
Abby发布了新的文献求助10
19秒前
19秒前
chayue完成签到 ,获得积分10
20秒前
张光光完成签到,获得积分10
20秒前
22秒前
张光光发布了新的文献求助10
24秒前
情怀应助逃跑快人一步采纳,获得10
25秒前
25秒前
25秒前
fsrm完成签到,获得积分10
26秒前
27秒前
123发布了新的文献求助20
28秒前
28秒前
薇薇发布了新的文献求助10
28秒前
29秒前
今后应助桀桀桀采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052