Collaboratively Setting Daily Step Goals with a Virtual Coach: Using Reinforcement Learning to Personalize Initial Proposals

强化学习 计算机科学 钢筋 人机交互 人工智能 多媒体 工程类 结构工程
作者
M.L.J. Dierikx,Nele Albers,Bouke L. Scheltinga,Willem‐Paul Brinkman
出处
期刊:Lecture Notes in Computer Science 卷期号:: 100-115
标识
DOI:10.1007/978-3-031-58226-4_9
摘要

Abstract Goal-setting is commonly used in behavior change applications for physical activity. However, for goals to be effective, they need to be tailored to a user’s situation (e.g., motivation, progress). One way to obtain such goals is a collaborative process in which a healthcare professional and client set a goal together, thus making use of the professional’s expertise and the client’s knowledge about their own situation. As healthcare professionals are not always available, we created a dialog with the virtual coach Steph to collaboratively set daily step goals. Since judgments in human decision-making processes are adjusted based on the starting point or anchor, the first step goal proposal Steph makes is likely to influence the user’s final goal and self-efficacy. Situational factors impacting physical activity (e.g., motivation, self-efficacy, available time) or how users process information (e.g., mood) may determine which initial proposals are most effective in getting users to reach their underlying previous activity-based recommended step goals. Using data from 117 people interacting with Steph for up to five days, we designed a reinforcement learning algorithm that considers users’ current and future situations when choosing an initial step goal proposal. Our simulations show that initial step goal proposals matter: choosing optimal ones based on this algorithm could make it more likely that people move to a situation with high motivation, high self-efficacy, and a favorable daily context. Then, they are more likely to achieve, but also to overachieve, their underlying recommended step goals. Our dataset is publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
msl2023完成签到,获得积分10
3秒前
4秒前
shezhinicheng完成签到,获得积分10
4秒前
biu我你开心吗完成签到,获得积分10
5秒前
iNk举报高挑的绝山求助涉嫌违规
7秒前
8秒前
e麓绝尘完成签到 ,获得积分10
11秒前
woommoow完成签到,获得积分10
11秒前
独特翠丝发布了新的文献求助10
14秒前
zdy完成签到,获得积分10
17秒前
18秒前
19秒前
21秒前
zhaoyu完成签到 ,获得积分10
22秒前
亦玉完成签到,获得积分10
22秒前
天天快乐应助wangayting采纳,获得30
22秒前
ye完成签到,获得积分10
22秒前
小蘑菇应助King16采纳,获得10
23秒前
青山完成签到,获得积分10
23秒前
852应助子车半烟采纳,获得10
25秒前
fanlin完成签到,获得积分10
25秒前
Ryan完成签到,获得积分10
26秒前
yydsyyd完成签到 ,获得积分10
26秒前
研友_5Zl9D8完成签到,获得积分10
27秒前
壮观千筹完成签到,获得积分20
29秒前
iNk举报耍酷海白求助涉嫌违规
29秒前
Estrella应助平淡的邪欢采纳,获得10
29秒前
34秒前
35秒前
嗯哼哈哈发布了新的文献求助10
35秒前
季不住完成签到,获得积分10
35秒前
大雄的梦想是什么完成签到 ,获得积分10
36秒前
独特翠丝完成签到,获得积分20
36秒前
LX完成签到,获得积分10
37秒前
一颗小行星完成签到 ,获得积分10
37秒前
腿毛没啦完成签到,获得积分10
38秒前
积极上进的小润完成签到,获得积分10
39秒前
King16发布了新的文献求助10
39秒前
氨基酸脱氨完成签到,获得积分10
39秒前
43秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139849
求助须知:如何正确求助?哪些是违规求助? 2790719
关于积分的说明 7796422
捐赠科研通 2447131
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185