Infrared Polarization-Empowered Full-Time Road Detection via Lightweight Multi-Pathway Collaborative 2D/3D Convolutional Networks

计算机科学 极化(电化学) 红外线的 光学 物理 化学 物理化学
作者
Xueqiang Fan,Bing Lin,Zhongyi Guo
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 12762-12775 被引量:5
标识
DOI:10.1109/tits.2024.3383405
摘要

Automatic roads detection is an essential task for traffic safety and intelligent transportation systems. Recently the long-wave infrared (LWIR) polarization imaging-based road detection technique has obtained significant progresses. However, the joint analysis among multiple polarization characteristics, sparse inter-channel information (along the $z$ -axis), and dense intra-channel information (inside the $x$ - $y$ plane), have not been considered effectively, hindering the effective detection of many road areas. Additionally, most of the existing methods often encounter a challenging trade-off between achieving high precision and maintaining a lightweight design. To tackle these issues, this paper presents a novel Lightweight Multi-Pathway Collaborative 2D/3D Convolutional Networks (LMPC2D3DCNet) with a small number of parameters for full-time road detection. Our LMPC2D3DCNet is the first attempt to incorporate 2D and 3D convolutional networks to balance extraction for sparse inter-channel polarization information and dense intra-channel polarization information, in which a new Cross 2D-3D Non-Local Attention (C2D3DNLA) network is proposed to derive respective latent features by exploiting both local and global polarization correlations. Meanwhile, it also follows the design of a multipath network structure that elegantly fuses plenty of low-frequency, high-frequency, and multiscale polarization information, thus obtaining more accurate modeling for road regions. Extensive experiments on one public infrared polarization dataset of road scenes demonstrate that our proposed LMPC2D3DCNet (The code will release soon on https://github.com/XueqiangF) achieves PRE of 96.96%, REC of 96.71%, OA of 99.45%, F1 of 96.72, BER of 1.80% and IoU of 93.85%, and outperforms significantly state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助小陈采纳,获得10
刚刚
刚刚
乐呀完成签到,获得积分10
刚刚
和谐冰菱发布了新的文献求助10
刚刚
1秒前
星希发布了新的文献求助30
1秒前
HEIKU应助应然忆采纳,获得10
1秒前
zodiac完成签到,获得积分0
1秒前
脑洞疼应助ikun采纳,获得10
1秒前
简单发布了新的文献求助10
2秒前
给我一个公式吧完成签到,获得积分20
2秒前
3秒前
4秒前
了了long发布了新的文献求助10
7秒前
甄冰海发布了新的文献求助10
7秒前
深情安青应助QLW采纳,获得10
8秒前
大个应助帅哥牛紫采纳,获得10
8秒前
8秒前
FashionBoy应助yhq采纳,获得10
9秒前
9秒前
研友_Z1xNWn发布了新的文献求助10
9秒前
落山姬完成签到,获得积分10
9秒前
Islay50ppm完成签到 ,获得积分10
9秒前
junjun发布了新的文献求助10
10秒前
xiaomings007发布了新的文献求助10
11秒前
12秒前
研友_nEW4G8发布了新的文献求助10
14秒前
ding应助甄冰海采纳,获得10
15秒前
16秒前
16秒前
16秒前
17秒前
Kirin完成签到,获得积分10
17秒前
18秒前
整齐的火龙果完成签到,获得积分10
18秒前
hh发布了新的文献求助10
18秒前
click完成签到 ,获得积分10
19秒前
FL应助不学石油采纳,获得20
19秒前
20秒前
Sophist完成签到,获得积分10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652247
求助须知:如何正确求助?哪些是违规求助? 3216485
关于积分的说明 9712113
捐赠科研通 2924205
什么是DOI,文献DOI怎么找? 1601585
邀请新用户注册赠送积分活动 754250
科研通“疑难数据库(出版商)”最低求助积分说明 733019