Calibrated One-Class Classification for Unsupervised Time Series Anomaly Detection

计算机科学 异常检测 系列(地层学) 班级(哲学) 模式识别(心理学) 时间序列 人工智能 异常(物理) 数据挖掘 机器学习 古生物学 生物 物理 凝聚态物理
作者
Hongzuo Xu,Yijie Wang,Songlei Jian,Qing Liao,Yongjun Wang,Guansong Pang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 5723-5736 被引量:8
标识
DOI:10.1109/tkde.2024.3393996
摘要

Time series anomaly detection is instrumental in maintaining system availability in various domains. Current work in this research line mainly focuses on learning data normality deeply and comprehensively by devising advanced neural network structures and new reconstruction/prediction learning objectives. However, their one-class learning process can be misled by latent anomalies in training data (i.e., anomaly contamination) under the unsupervised paradigm. Their learning process also lacks knowledge about the anomalies. Consequently, they often learn a biased, inaccurate normality boundary. To tackle these problems, this paper proposes calibrated one-class classification for anomaly detection, realizing contamination-tolerant, anomaly-informed learning of data normality via uncertainty modeling-based calibration and native anomaly-based calibration. Specifically, our approach adaptively penalizes uncertain predictions to restrain irregular samples in anomaly contamination during optimization, while simultaneously encouraging confident predictions on regular samples to ensure effective normality learning. This largely alleviates the negative impact of anomaly contamination. Our approach also creates native anomaly examples via perturbation to simulate time series abnormal behaviors. Through discriminating these dummy anomalies, our one-class learning is further calibrated to form a more precise normality boundary. Extensive experiments on ten real-world datasets show that our model achieves substantial improvement over sixteen state-of-the-art contenders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栋宝发布了新的文献求助10
1秒前
3秒前
斯文败类应助故意的可愁采纳,获得10
4秒前
清水发布了新的文献求助30
4秒前
5秒前
5秒前
6秒前
Mr贱包子发布了新的文献求助10
6秒前
7秒前
酷波er应助ggg采纳,获得10
9秒前
清颜发布了新的文献求助10
9秒前
9秒前
栋宝完成签到,获得积分20
10秒前
二师兄给二师兄的求助进行了留言
10秒前
活泼纲发布了新的文献求助30
10秒前
谦让冰真关注了科研通微信公众号
10秒前
11秒前
小蘑菇应助时光如梭采纳,获得10
11秒前
思源应助哦哦采纳,获得10
11秒前
李健应助热情的纸飞机采纳,获得10
12秒前
言灵鱼完成签到,获得积分20
13秒前
研友完成签到 ,获得积分10
13秒前
CodeCraft应助DAaaaa采纳,获得10
13秒前
jackie完成签到 ,获得积分10
14秒前
14秒前
Mr贱包子完成签到,获得积分10
14秒前
花怜完成签到 ,获得积分10
15秒前
15秒前
15秒前
言灵鱼发布了新的文献求助10
16秒前
17秒前
17秒前
Eden发布了新的文献求助10
21秒前
jiangfuuuu发布了新的文献求助10
21秒前
22秒前
哦哦发布了新的文献求助10
23秒前
虚幻寄文完成签到 ,获得积分10
24秒前
禾平完成签到 ,获得积分10
24秒前
活泼纲完成签到,获得积分10
25秒前
调研昵称发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161657
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897803
捐赠科研通 2471830
什么是DOI,文献DOI怎么找? 1316176
科研通“疑难数据库(出版商)”最低求助积分说明 631245
版权声明 602129