罗丹明B
降级(电信)
辐照
复合数
光催化
可见光谱
光化学
材料科学
罗丹明
化学工程
核化学
光电子学
化学
复合材料
荧光
催化作用
光学
计算机科学
电信
有机化学
物理
核物理学
工程类
作者
Muhammad Tanveer,Husnain Haider Cheema,Ghulam Nabi,Ahmad Ruhan Ali,Muhammad Khalid Hussain,M. A. Qadeer
标识
DOI:10.1016/j.jlumin.2024.120585
摘要
Dye pollutant in the water is the most challenging problem in the textile industries. Novel composites photo-catalysts (BiVO4/TiS2@3%, BiVO4/TiS2@6%, and BiVO4/TiS2@9%) have been prepared to solve this problem. These composites proved promising materials as they have high photocatalytic performance and excellent electro-conductivity properties. Novel BiVO4/TiS2@3%, BiVO4/TiS2@6%, and BiVO4/TiS2@9% composites nanomaterials characterized by Photoluminescence Spectroscopy, UV–visible Diffuse Reflectance Spectroscopy (DRS), Raman Spectroscopy, Energy dispersive X-ray Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction Techniques. BiVO4/TiS2@6% shows superior photocatalytic activity and removed RhB molecules (97%) in a very short time of 70 min when irradiated underneath visible light. Compared to pure BiVO4 and TiS2, the average photocatalytic efficiency of composite materials (BiVO4/TiS2@3%, BiVO4/TiS2@6%, and BiVO4/TiS2@9%) was high. Photo generated carrier's transmission becomes smooth due to the very small resistance of BiVO4/TiS2@3%, BiVO4/TiS2@6%, and BiVO4/TiS2@9%. The photoluminescence spectrum (PL) shows that photo-generated carriers of BiVO4/TiS2@6% have the highest separation efficiency. Focusing on a capturing experiment for the degradation of RhB, a good photocatalytic process was presented. It was unexpected to see how quickly the rate of degradation of a new BiVO4/TiS2@6% composite photocatalytic material could still be up to 90% after six cycles. Finally, proposed an excellent photo-catalyst BiVO4/TiS2@6% for wastewater treatment on an industrial scale.
科研通智能强力驱动
Strongly Powered by AbleSci AI