Synchronously enhancing the strength, toughness, and stress corrosion resistance of high-end aluminum alloys via interpretable machine learning

材料科学 合金 腐蚀 韧性 极限抗拉强度 微观结构 冶金 断裂韧性 价电子 点蚀 电子 物理 量子力学
作者
Lei Jiang,Huadong Fu,Zhihao Zhang,Hongtao Zhang,Xinbiao Zhang,Xinmin Feng,Xinyuan Xu,Minghong Mao,Jianxin Xie
出处
期刊:Acta Materialia [Elsevier]
卷期号:270: 119873-119873 被引量:13
标识
DOI:10.1016/j.actamat.2024.119873
摘要

Strength, toughness, and stress corrosion resistance are critical properties of aluminum alloys for high-end equipment manufacturing. Unfortunately, the situation of complex alloy composition, diverse aging systems, and conflicting property relationships hinder the synchronous enhancement of three properties. Here, we proposed an interpretable machine learning design strategy for high-end aluminum alloy. The critical intrinsic factors and explicit laws of elements affecting the ultimate tensile strength (UTS), fracture toughness (KIC), and stress corrosion sensitivity factor (ISSRT) of alloys were excavated: The elements with large number of electrons in d-valence electron orbitals, high boiling point, and low nuclear electron distance help enhance the UTS; The elements with low density and minimized difference in first ionization energy with aluminum help improve the KIC; The elements with high diffusion activation energy in aluminum and high corrosion potential in seawater help reduce the ISSRT. Based on the above findings, three microalloying elements of Ti, Cr, and Zr, which have the remarkable combined effect of enhancing synchronously the three properties, were selected, and a new advanced aluminum alloy Al-10.50Zn-2.31Mg-1.56Cu-0.09Ti-0.15Cr-0.10Zr was designed. The UTS, KIC, and ISSRT were 760±4MPa, 34.9±0.3MPa·m1/2, and 13.3%±1.7%, respectively, after RRA treatment. Microstructure analysis revealed that the new alloy had almost no micron secondary phase after RRA treatment, reducing the sites for pitting and cavity formation. The addition of Ti, Cr, and Zr formed dispersoids Al18(Cr,Ti)2Mg3 and Al3Zr, which contributed to the synchronous improvement of strength, toughness, and stress corrosion resistance. The high-volume fraction of precipitates significantly enhanced the strength of the alloy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人的映雁完成签到,获得积分10
刚刚
刚刚
美丽的之双完成签到,获得积分10
1秒前
阿会完成签到,获得积分10
1秒前
wqm完成签到,获得积分10
2秒前
戏言121发布了新的文献求助10
3秒前
3秒前
4秒前
优雅的流沙完成签到 ,获得积分10
5秒前
猫的海完成签到,获得积分10
5秒前
5秒前
Eason Liu完成签到,获得积分0
6秒前
Wendy1204完成签到,获得积分20
6秒前
Hello应助654采纳,获得10
6秒前
咩咩羊完成签到,获得积分10
6秒前
10秒前
lianqing完成签到,获得积分10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
11秒前
RC_Wang应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
hh应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得30
11秒前
11秒前
Leif应助科研通管家采纳,获得20
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
忘羡222发布了新的文献求助20
14秒前
丰富猕猴桃完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824