Multi-agent simulation of autonomous industrial vehicle fleets: Towards dynamic task allocation in V2X cooperation mode

可扩展性 计算机科学 分布式计算 调度(生产过程) 任务(项目管理) 过程(计算) 稳健性(进化) 灵活性(工程) 系统工程 工程类 运营管理 统计 化学 操作系统 基因 数据库 生物化学 数学
作者
Juliette Grosset,Alain-Jérôme Fougères,Moïse Djoko‐Kouam,J.-M. Bonnin
出处
期刊:Integrated Computer-aided Engineering [IOS Press]
卷期号:31 (3): 249-266 被引量:1
标识
DOI:10.3233/ica-240735
摘要

The smart factory leads to a strong digitalization of industrial processes and continuous communication between the systems integrated into the production, storage, and supply chains. One of the research areas in Industry 4.0 is the possibility of using autonomous and/or intelligent industrial vehicles. The optimization of the management of the tasks allocated to these vehicles with adaptive behaviours, as well as the increase in vehicle-to-everything communications (V2X) make it possible to develop collective and adaptive intelligence for these vehicles, often grouped in fleets. Task allocation and scheduling are often managed centrally. The requirements for flexibility, robustness, and scalability lead to the consideration of decentralized mechanisms to react to unexpected situations. However, before being definitively adopted, decentralization must first be modelled and then simulated. Thus, we use a multi-agent simulation to test the proposed dynamic task (re)allocation process. A set of problematic situations for the circulation of autonomous industrial vehicles in areas such as smart warehouses (obstacles, breakdowns, etc.) has been identified. These problematic situations could disrupt or harm the successful completion of the process of dynamic (re)allocation of tasks. We have therefore defined scenarios involving them in order to demonstrate through simulation that the process remains reliable. The simulation of new problematic situations also allows us to extend the potential of this process, which we discuss at the end of the article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
菜饼哥发布了新的文献求助10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
刚刚
所所应助科研通管家采纳,获得10
刚刚
ting应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
刚刚
arniu2008应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
ting应助科研通管家采纳,获得10
刚刚
靓丽三德应助科研通管家采纳,获得10
刚刚
hqyqh1314完成签到,获得积分10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得30
1秒前
Jason应助科研通管家采纳,获得10
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
ding应助Natasha采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
情怀应助zhou国兵采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
热情薯片完成签到,获得积分10
1秒前
Jason应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718886
求助须知:如何正确求助?哪些是违规求助? 5254421
关于积分的说明 15287351
捐赠科研通 4868927
什么是DOI,文献DOI怎么找? 2614473
邀请新用户注册赠送积分活动 1564399
关于科研通互助平台的介绍 1521791