Multi-agent simulation of autonomous industrial vehicle fleets: Towards dynamic task allocation in V2X cooperation mode

可扩展性 计算机科学 分布式计算 调度(生产过程) 任务(项目管理) 过程(计算) 稳健性(进化) 灵活性(工程) 系统工程 工程类 运营管理 统计 化学 操作系统 基因 数据库 生物化学 数学
作者
Juliette Grosset,Alain-Jérôme Fougères,Moïse Djoko‐Kouam,J.-M. Bonnin
出处
期刊:Integrated Computer-aided Engineering [IOS Press]
卷期号:31 (3): 249-266 被引量:1
标识
DOI:10.3233/ica-240735
摘要

The smart factory leads to a strong digitalization of industrial processes and continuous communication between the systems integrated into the production, storage, and supply chains. One of the research areas in Industry 4.0 is the possibility of using autonomous and/or intelligent industrial vehicles. The optimization of the management of the tasks allocated to these vehicles with adaptive behaviours, as well as the increase in vehicle-to-everything communications (V2X) make it possible to develop collective and adaptive intelligence for these vehicles, often grouped in fleets. Task allocation and scheduling are often managed centrally. The requirements for flexibility, robustness, and scalability lead to the consideration of decentralized mechanisms to react to unexpected situations. However, before being definitively adopted, decentralization must first be modelled and then simulated. Thus, we use a multi-agent simulation to test the proposed dynamic task (re)allocation process. A set of problematic situations for the circulation of autonomous industrial vehicles in areas such as smart warehouses (obstacles, breakdowns, etc.) has been identified. These problematic situations could disrupt or harm the successful completion of the process of dynamic (re)allocation of tasks. We have therefore defined scenarios involving them in order to demonstrate through simulation that the process remains reliable. The simulation of new problematic situations also allows us to extend the potential of this process, which we discuss at the end of the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果完成签到,获得积分20
刚刚
万能图书馆应助henry采纳,获得10
刚刚
刚刚
今后应助樊念烟采纳,获得10
刚刚
苏苏发布了新的文献求助10
刚刚
1秒前
科研通AI5应助chemier027采纳,获得10
1秒前
BAEKHYUN完成签到 ,获得积分10
1秒前
1秒前
无名完成签到,获得积分10
1秒前
2秒前
清脆的秋寒完成签到,获得积分10
2秒前
xxxhhaoxxx完成签到,获得积分10
2秒前
sstargazer发布了新的文献求助10
2秒前
yjzzz完成签到,获得积分10
3秒前
4秒前
bdJ发布了新的文献求助10
4秒前
BAEKHYUN关注了科研通微信公众号
4秒前
Dan1mple完成签到 ,获得积分10
4秒前
庾灭男发布了新的文献求助10
5秒前
小不点完成签到,获得积分10
5秒前
5秒前
沙雕荷包蛋完成签到,获得积分10
5秒前
所所应助chl采纳,获得10
5秒前
5秒前
情怀应助英勇的半兰采纳,获得10
5秒前
5秒前
6秒前
美丽的枫完成签到,获得积分10
6秒前
hu11完成签到,获得积分20
6秒前
华仔应助刻苦惜霜采纳,获得10
6秒前
6秒前
迷路兔子完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
bkagyin应助小脑袋采纳,获得10
7秒前
向秋完成签到,获得积分10
7秒前
7秒前
白白发布了新的文献求助10
8秒前
额尔其子完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794