Integrated engineering at distal site and active center regulates stereoselectivity and activity of carbonyl reductase towards N-Boc-pyrrolidone

立体选择性 化学 中心(范畴论) 立体化学 活动站点 活动中心 催化作用 有机化学 结晶学
作者
Jie Gu,Le Li,Jun Wang,Xin Su,Man Zou,Yan Xu,Yao Nie
出处
期刊:Molecular Catalysis [Elsevier]
卷期号:558: 114057-114057 被引量:1
标识
DOI:10.1016/j.mcat.2024.114057
摘要

Green and efficient biosynthesis of two enantiomeric products of N-Boc-pyrrolidinol (NPBL) as key pharmaceutical blocks for treatment of cancer and HIV has received much attention. The precursor, N-Boc-pyrrolidone (NPBO), is considered as a difficult-to-reduce ketone by carbonyl reductases, because it has a bulky Boc group and sterically similar substitutions on either side of the carbonyl group resulting in low stereoselectivity and conversion. Moreover, activity enhancement concomitant with reversal of stereoselectivity is challenging. Carbonyl reductase (CpCR) from Candida parapsilosis shows 90 %ee for (S)-NBPL, but low catalytic efficiency. In this study, we considered both activity and selectivity, and proposed an integrated engineering strategy. The distal site was introduced from an activity perspective and the active pocket sites were introduced by virtual saturation mutagenesis from a stereoselectivity perspective. Mutants L34A/W116A (95 %ee (S)) and L34A/W116T/F285C/W286S (94 %ee (R)) were obtained with 26.8-fold and 2.9-fold higher catalytic efficiencies, respectively. Molecular dynamics simulations revealed the mechanism of stereoselective flip-flop and activity enhancement; mutation altered the substrate-binding mode and changed the shape and size of the cavities, thus contributing to the change in the ratio of active conformations in the pre-reactive state. This study, which differs from the traditional method of exchanging large and small pockets, provides a viable approach for the rational design of carbonyl reductases with high stereoselectivity for target substrates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不打扰完成签到 ,获得积分10
1秒前
千幻发布了新的文献求助10
1秒前
crr发布了新的文献求助10
1秒前
1秒前
2秒前
jklwss完成签到,获得积分10
2秒前
sa完成签到,获得积分10
2秒前
2秒前
万能图书馆应助成就莞采纳,获得30
2秒前
哇哈哈完成签到,获得积分10
3秒前
阔达的惠完成签到,获得积分10
3秒前
liang19640908完成签到 ,获得积分10
3秒前
季悦发布了新的文献求助10
3秒前
咸蛋黄巧克力完成签到,获得积分10
3秒前
3秒前
李唯佳完成签到 ,获得积分10
4秒前
zyt完成签到,获得积分10
4秒前
adasdad完成签到 ,获得积分10
4秒前
5秒前
嘿嘿完成签到 ,获得积分10
5秒前
5秒前
6秒前
tanmeng77发布了新的文献求助10
6秒前
7秒前
艺玲完成签到,获得积分10
7秒前
每天都想下班完成签到 ,获得积分10
7秒前
8秒前
圈圈发布了新的文献求助10
8秒前
忧郁的听露关注了科研通微信公众号
8秒前
风趣的涵柏完成签到,获得积分10
8秒前
9秒前
9秒前
成就梦松发布了新的文献求助10
9秒前
1233333完成签到,获得积分10
9秒前
ding应助EunolusZ采纳,获得10
9秒前
Andy完成签到 ,获得积分10
10秒前
艺玲发布了新的文献求助10
10秒前
yls完成签到,获得积分10
10秒前
wang完成签到,获得积分10
11秒前
MADKAI发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672