Integrated engineering at distal site and active center regulates stereoselectivity and activity of carbonyl reductase towards N-Boc-pyrrolidone

立体选择性 位阻效应 化学 立体化学 饱和突变 活动站点 活动中心 突变体 对映体 还原酶 突变 组合化学 催化作用 侧链 酶催化 生物催化 立体异构 对映体过量 分子模型 合理设计 定点突变 结构-活动关系
作者
Jie Gu,Le Li,Jun Wang,Xin Su,Man Zou,Yan Xu,Yao Nie
出处
期刊:Molecular Catalysis [Elsevier]
卷期号:558: 114057-114057 被引量:3
标识
DOI:10.1016/j.mcat.2024.114057
摘要

Green and efficient biosynthesis of two enantiomeric products of N-Boc-pyrrolidinol (NPBL) as key pharmaceutical blocks for treatment of cancer and HIV has received much attention. The precursor, N-Boc-pyrrolidone (NPBO), is considered as a difficult-to-reduce ketone by carbonyl reductases, because it has a bulky Boc group and sterically similar substitutions on either side of the carbonyl group resulting in low stereoselectivity and conversion. Moreover, activity enhancement concomitant with reversal of stereoselectivity is challenging. Carbonyl reductase (CpCR) from Candida parapsilosis shows 90 %ee for (S)-NBPL, but low catalytic efficiency. In this study, we considered both activity and selectivity, and proposed an integrated engineering strategy. The distal site was introduced from an activity perspective and the active pocket sites were introduced by virtual saturation mutagenesis from a stereoselectivity perspective. Mutants L34A/W116A (95 %ee (S)) and L34A/W116T/F285C/W286S (94 %ee (R)) were obtained with 26.8-fold and 2.9-fold higher catalytic efficiencies, respectively. Molecular dynamics simulations revealed the mechanism of stereoselective flip-flop and activity enhancement; mutation altered the substrate-binding mode and changed the shape and size of the cavities, thus contributing to the change in the ratio of active conformations in the pre-reactive state. This study, which differs from the traditional method of exchanging large and small pockets, provides a viable approach for the rational design of carbonyl reductases with high stereoselectivity for target substrates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满太阳完成签到 ,获得积分10
刚刚
橙子发布了新的文献求助10
刚刚
刚刚
xy发布了新的文献求助10
2秒前
2秒前
伶俐的星月完成签到,获得积分10
3秒前
小二郎应助Horizon采纳,获得10
3秒前
3秒前
lzx完成签到,获得积分10
4秒前
4秒前
小蘑菇应助若米采纳,获得10
4秒前
Georges-09完成签到,获得积分10
5秒前
小马甲应助实验顺利采纳,获得10
5秒前
吴迪发布了新的文献求助10
5秒前
雁过留声完成签到,获得积分10
5秒前
6秒前
brouf完成签到 ,获得积分10
6秒前
个性的荆发布了新的文献求助10
7秒前
llf应助独特的追命采纳,获得20
7秒前
8秒前
满意语芙发布了新的文献求助10
9秒前
10秒前
10秒前
豆豆完成签到,获得积分10
10秒前
wang5945发布了新的文献求助10
11秒前
颖123发布了新的文献求助30
11秒前
apong发布了新的文献求助10
12秒前
12秒前
zzr完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
14秒前
14秒前
渡月桥完成签到,获得积分10
14秒前
田大明发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901