Data Disparity and Temporal Unavailability Aware Asynchronous Federated Learning for Predictive Maintenance on Transportation Fleets

不可用 异步通信 计算机科学 预测性维护 实时计算 人工智能 计算机网络 可靠性工程 工程类
作者
Leonie von Wahl,Niklas Heidenreich,Prasenjit Mitra,Michael Nolting,Nicolas Tempelmeier
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (14): 15420-15428 被引量:1
标识
DOI:10.1609/aaai.v38i14.29467
摘要

Predictive maintenance has emerged as a critical application in modern transportation, leveraging sensor data to forecast potential damages proactively using machine learning. However, privacy concerns limit data sharing, making Federated learning an appealing approach to preserve data privacy. Nevertheless, challenges arise due to disparities in data distribution and temporal unavailability caused by individual usage patterns in transportation. In this paper, we present a novel asynchronous federated learning approach to address system heterogeneity and facilitate machine learning for predictive maintenance on transportation fleets. The approach introduces a novel data disparity aware aggregation scheme and a federated early stopping method for training. To validate the effectiveness of our approach, we evaluate it on two independent real-world datasets from the transportation domain: 1) oil dilution prediction of car combustion engines and 2) remaining lifetime prediction of plane turbofan engines. Our experiments show that we reliably outperform five state-of-the-art baselines, including federated and classical machine learning models. Moreover, we show that our approach generalises to various prediction model architectures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
冬藏完成签到,获得积分10
刚刚
qiuxiu发布了新的文献求助10
1秒前
3秒前
英姑应助满意以亦采纳,获得30
3秒前
gww发布了新的文献求助20
4秒前
枫林晚完成签到,获得积分10
4秒前
JiangY完成签到,获得积分10
5秒前
5秒前
5秒前
陈云凤完成签到,获得积分10
5秒前
ayintree发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
zhang完成签到,获得积分20
6秒前
ning发布了新的文献求助10
6秒前
6秒前
元谷雪发布了新的文献求助10
7秒前
7秒前
8秒前
Return应助科研通管家采纳,获得10
8秒前
积极的箴完成签到,获得积分10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
pluto应助哒哒哒采纳,获得10
9秒前
9秒前
Momomo应助哒哒哒采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
淡定宛白完成签到,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277