Unknown fault detection of rolling bearings guided by global–local feature coupling

联轴节(管道) 特征(语言学) 断层(地质) 故障检测与隔离 方位(导航) 计算机科学 模式识别(心理学) 工程类 汽车工程 人工智能 控制理论(社会学) 机械工程 地质学 地震学 哲学 语言学 控制(管理) 执行机构
作者
Chenglong Wang,Jie Nie,Peizhe Yin,Jiali Xu,Shusong Yu,Xiangqian Ding
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:213: 111331-111331
标识
DOI:10.1016/j.ymssp.2024.111331
摘要

Fault diagnosis technology can effectively prevent the occurrence of faults and reduce safety hazards, which is of great significance in nuclear power, aerospace, manufacturing, and other fields. Given the stringent demands of safe and reliable equipment operation in practical production environments, acquiring a comprehensive set of fault samples becomes challenging. At present, many deep learning-based methods have been researched on this problem. However, these methods do not account for the identification of novel faults that may emerge. In this paper, we propose a novel global and local feature joint learning method for unknown fault detection, which addresses this problem by applying the knowledge learned by the supervised feature extraction process to the unsupervised clustering process. In particular, we propose a dual-branch framework for detecting unknown faults, which is based on multi-scale coupled feature extraction. This framework establishes correlations between features at different scales and employs the coupling of global and local features to facilitate the detection of unknown faults. Additionally, we propose a causal modeling method for global and local features, aiming to uncover the true causal relationship among global and local features and fault categories. Moreover, we propose a consistent prediction method to ensure the coherence of prediction results between the global and local branches. We evaluate the performance of our model using the CWRU, PU, and RB datasets, and the results demonstrate its superiority over state-of-the-art methods in terms of clustering accuracy and normalized mutual information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赤邪发布了新的文献求助10
刚刚
Owen应助lwei采纳,获得10
刚刚
shelly0621给shelly0621的求助进行了留言
刚刚
青木蓝完成签到,获得积分10
刚刚
刚刚
迅速泽洋完成签到,获得积分10
1秒前
dan1029完成签到,获得积分10
1秒前
小王完成签到,获得积分10
1秒前
李繁蕊发布了新的文献求助10
1秒前
2秒前
2秒前
隐形曼青应助hjj采纳,获得10
2秒前
susu完成签到,获得积分10
3秒前
4秒前
caicai发布了新的文献求助10
4秒前
无情的菲鹰完成签到,获得积分10
4秒前
兔兔完成签到 ,获得积分10
4秒前
打打应助勤奋的蜗牛采纳,获得10
4秒前
5秒前
jery完成签到,获得积分10
5秒前
乐乐应助润润轩轩采纳,获得10
6秒前
指哪打哪完成签到,获得积分10
6秒前
弄井发布了新的文献求助30
7秒前
7秒前
7秒前
7秒前
7秒前
Wing完成签到 ,获得积分10
8秒前
R先生发布了新的文献求助10
8秒前
科研小白发布了新的文献求助10
8秒前
年三月完成签到 ,获得积分10
9秒前
lb完成签到,获得积分20
9秒前
9秒前
香蕉觅云应助叶飞荷采纳,获得10
10秒前
flow发布了新的文献求助10
11秒前
穆仰应助li采纳,获得10
11秒前
班尼肥鸭完成签到 ,获得积分10
11秒前
噔噔噔噔发布了新的文献求助10
11秒前
bkagyin应助ffff采纳,获得10
11秒前
000完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762