Unknown fault detection of rolling bearings guided by global–local feature coupling

联轴节(管道) 特征(语言学) 断层(地质) 故障检测与隔离 方位(导航) 计算机科学 模式识别(心理学) 工程类 汽车工程 人工智能 控制理论(社会学) 机械工程 地质学 地震学 哲学 语言学 控制(管理) 执行机构
作者
Chenglong Wang,Jie Nie,Peizhe Yin,Jiali Xu,Shusong Yu,Xiangqian Ding
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:213: 111331-111331
标识
DOI:10.1016/j.ymssp.2024.111331
摘要

Fault diagnosis technology can effectively prevent the occurrence of faults and reduce safety hazards, which is of great significance in nuclear power, aerospace, manufacturing, and other fields. Given the stringent demands of safe and reliable equipment operation in practical production environments, acquiring a comprehensive set of fault samples becomes challenging. At present, many deep learning-based methods have been researched on this problem. However, these methods do not account for the identification of novel faults that may emerge. In this paper, we propose a novel global and local feature joint learning method for unknown fault detection, which addresses this problem by applying the knowledge learned by the supervised feature extraction process to the unsupervised clustering process. In particular, we propose a dual-branch framework for detecting unknown faults, which is based on multi-scale coupled feature extraction. This framework establishes correlations between features at different scales and employs the coupling of global and local features to facilitate the detection of unknown faults. Additionally, we propose a causal modeling method for global and local features, aiming to uncover the true causal relationship among global and local features and fault categories. Moreover, we propose a consistent prediction method to ensure the coherence of prediction results between the global and local branches. We evaluate the performance of our model using the CWRU, PU, and RB datasets, and the results demonstrate its superiority over state-of-the-art methods in terms of clustering accuracy and normalized mutual information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助巷陌巾采纳,获得10
1秒前
多情的灵安完成签到,获得积分10
2秒前
独享发布了新的文献求助10
3秒前
耀学菜菜发布了新的文献求助10
3秒前
轩辕寄风完成签到,获得积分0
3秒前
刘仁轨完成签到,获得积分10
4秒前
路寻完成签到,获得积分10
5秒前
DVD发布了新的文献求助10
5秒前
扶苏发布了新的文献求助10
5秒前
温两两完成签到,获得积分10
6秒前
传奇3应助嘟嘟可采纳,获得10
6秒前
健忘过客完成签到 ,获得积分10
6秒前
小石头完成签到,获得积分10
6秒前
李德胜完成签到,获得积分10
6秒前
丰富的微笑完成签到,获得积分10
7秒前
dragonking520发布了新的文献求助10
7秒前
8秒前
xxlbp发布了新的文献求助10
8秒前
三千港完成签到,获得积分10
9秒前
Lucas应助脑残骑士老张采纳,获得10
9秒前
Distance发布了新的文献求助10
9秒前
9秒前
zw完成签到,获得积分10
9秒前
iW完成签到 ,获得积分10
10秒前
笨笨十三完成签到 ,获得积分0
10秒前
12秒前
小麦完成签到,获得积分10
12秒前
shin0324完成签到,获得积分10
12秒前
清新的战斗机完成签到 ,获得积分10
12秒前
悲凉的冬天完成签到 ,获得积分10
13秒前
荀幼旋发布了新的文献求助10
13秒前
13秒前
火火完成签到,获得积分10
13秒前
Danny完成签到,获得积分10
13秒前
爱笑的开山完成签到,获得积分10
13秒前
2025顺顺利利完成签到 ,获得积分10
13秒前
zw发布了新的文献求助10
14秒前
朴实的小萱完成签到 ,获得积分10
14秒前
Yi完成签到,获得积分10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904