Unknown fault detection of rolling bearings guided by global–local feature coupling

联轴节(管道) 特征(语言学) 断层(地质) 故障检测与隔离 方位(导航) 计算机科学 模式识别(心理学) 工程类 汽车工程 人工智能 控制理论(社会学) 机械工程 地质学 地震学 哲学 执行机构 控制(管理) 语言学
作者
Chenglong Wang,Jie Nie,Peizhe Yin,Jiali Xu,Shusong Yu,Xiangqian Ding
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:213: 111331-111331
标识
DOI:10.1016/j.ymssp.2024.111331
摘要

Fault diagnosis technology can effectively prevent the occurrence of faults and reduce safety hazards, which is of great significance in nuclear power, aerospace, manufacturing, and other fields. Given the stringent demands of safe and reliable equipment operation in practical production environments, acquiring a comprehensive set of fault samples becomes challenging. At present, many deep learning-based methods have been researched on this problem. However, these methods do not account for the identification of novel faults that may emerge. In this paper, we propose a novel global and local feature joint learning method for unknown fault detection, which addresses this problem by applying the knowledge learned by the supervised feature extraction process to the unsupervised clustering process. In particular, we propose a dual-branch framework for detecting unknown faults, which is based on multi-scale coupled feature extraction. This framework establishes correlations between features at different scales and employs the coupling of global and local features to facilitate the detection of unknown faults. Additionally, we propose a causal modeling method for global and local features, aiming to uncover the true causal relationship among global and local features and fault categories. Moreover, we propose a consistent prediction method to ensure the coherence of prediction results between the global and local branches. We evaluate the performance of our model using the CWRU, PU, and RB datasets, and the results demonstrate its superiority over state-of-the-art methods in terms of clustering accuracy and normalized mutual information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tjqhehe完成签到,获得积分10
1秒前
1秒前
慕青应助海贼学术采纳,获得10
2秒前
DJ完成签到,获得积分20
4秒前
梅莉达完成签到 ,获得积分10
5秒前
机器猫nzy发布了新的文献求助10
5秒前
王博龙完成签到 ,获得积分10
6秒前
传奇3应助gbr0519采纳,获得50
6秒前
冯FF完成签到,获得积分10
8秒前
忧伤的鲜花完成签到,获得积分10
8秒前
8秒前
聪明勇敢快乐的小羊完成签到,获得积分10
9秒前
英俊的铭应助SDNUDRUG采纳,获得10
9秒前
酷波er应助yyyy采纳,获得10
10秒前
吱吱熊sama完成签到,获得积分10
12秒前
12秒前
我的学哥学姐完成签到 ,获得积分10
12秒前
fhl完成签到,获得积分10
12秒前
周VV完成签到,获得积分10
14秒前
小马甲应助BCS采纳,获得10
14秒前
15秒前
15秒前
Chengwang完成签到,获得积分10
16秒前
Maisie完成签到,获得积分10
16秒前
可靠觅风完成签到,获得积分10
16秒前
李健应助腼腆的天宇采纳,获得10
16秒前
撒大苏打发布了新的文献求助10
17秒前
kuang完成签到,获得积分10
17秒前
又困完成签到 ,获得积分10
18秒前
wry完成签到,获得积分10
18秒前
顺利秋灵完成签到,获得积分10
19秒前
zzy完成签到 ,获得积分10
19秒前
19秒前
19秒前
coco完成签到,获得积分10
20秒前
guoduan完成签到,获得积分10
20秒前
dou发布了新的文献求助10
20秒前
小犬发布了新的文献求助10
20秒前
敏敏子呀完成签到 ,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285417
求助须知:如何正确求助?哪些是违规求助? 4438512
关于积分的说明 13817541
捐赠科研通 4319833
什么是DOI,文献DOI怎么找? 2371192
邀请新用户注册赠送积分活动 1366728
关于科研通互助平台的介绍 1330185