Unknown fault detection of rolling bearings guided by global–local feature coupling

联轴节(管道) 特征(语言学) 断层(地质) 故障检测与隔离 方位(导航) 计算机科学 模式识别(心理学) 工程类 汽车工程 人工智能 控制理论(社会学) 机械工程 地质学 地震学 哲学 语言学 控制(管理) 执行机构
作者
Chenglong Wang,Jie Nie,Peizhe Yin,Jiali Xu,Shusong Yu,Xiangqian Ding
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:213: 111331-111331
标识
DOI:10.1016/j.ymssp.2024.111331
摘要

Fault diagnosis technology can effectively prevent the occurrence of faults and reduce safety hazards, which is of great significance in nuclear power, aerospace, manufacturing, and other fields. Given the stringent demands of safe and reliable equipment operation in practical production environments, acquiring a comprehensive set of fault samples becomes challenging. At present, many deep learning-based methods have been researched on this problem. However, these methods do not account for the identification of novel faults that may emerge. In this paper, we propose a novel global and local feature joint learning method for unknown fault detection, which addresses this problem by applying the knowledge learned by the supervised feature extraction process to the unsupervised clustering process. In particular, we propose a dual-branch framework for detecting unknown faults, which is based on multi-scale coupled feature extraction. This framework establishes correlations between features at different scales and employs the coupling of global and local features to facilitate the detection of unknown faults. Additionally, we propose a causal modeling method for global and local features, aiming to uncover the true causal relationship among global and local features and fault categories. Moreover, we propose a consistent prediction method to ensure the coherence of prediction results between the global and local branches. We evaluate the performance of our model using the CWRU, PU, and RB datasets, and the results demonstrate its superiority over state-of-the-art methods in terms of clustering accuracy and normalized mutual information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无限水杯发布了新的文献求助10
刚刚
shi hui完成签到,获得积分10
1秒前
2秒前
3秒前
5秒前
5秒前
Dr.Great发布了新的文献求助10
6秒前
lybin发布了新的文献求助10
7秒前
酷炫曼寒完成签到,获得积分20
9秒前
9秒前
Nanozyme发布了新的文献求助10
10秒前
徐反宁完成签到,获得积分10
10秒前
今后应助科研通管家采纳,获得10
10秒前
丰知然应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
丰知然应助科研通管家采纳,获得10
10秒前
10秒前
ding应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
丰知然应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
11秒前
大脸兔狲完成签到 ,获得积分10
14秒前
15秒前
鲤鱼宛凝完成签到,获得积分10
16秒前
慕青应助Dr.Great采纳,获得10
16秒前
优雅的橘子完成签到,获得积分10
18秒前
20秒前
无限水杯完成签到,获得积分10
20秒前
wuyanbiaoqiao应助dangdang601采纳,获得100
21秒前
云淡风轻发布了新的文献求助10
21秒前
nature完成签到 ,获得积分10
25秒前
星你发布了新的文献求助10
25秒前
漂亮夏兰完成签到 ,获得积分10
25秒前
甘瓜完成签到,获得积分10
28秒前
28秒前
30秒前
33秒前
wanci应助可靠的难胜采纳,获得10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316718
求助须知:如何正确求助?哪些是违规求助? 2948488
关于积分的说明 8540905
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436143
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724