CMNet: deep learning model for colon polyp segmentation based on dual-branch structure

医学 卷积神经网络 深度学习 人工智能 分割 结肠镜检查 模式识别(心理学) 结直肠癌 癌症 内科学 计算机科学
作者
Xuguang Cao,Kefeng Fan,Cun Xu,Huilin Ma,Kaijie Jiao
出处
期刊:Journal of medical imaging [SPIE]
卷期号:11 (02) 被引量:1
标识
DOI:10.1117/1.jmi.11.2.024004
摘要

PurposeColon cancer is one of the top three diseases in gastrointestinal cancers, and colon polyps are an important trigger of colon cancer. Early diagnosis and removal of colon polyps can avoid the incidence of colon cancer. Currently, colon polyp removal surgery is mainly based on artificial-intelligence (AI) colonoscopy, supplemented by deep-learning technology to help doctors remove colon polyps. With the development of deep learning, the use of advanced AI technology to assist in medical diagnosis has become mainstream and can maximize the doctor's diagnostic time and help doctors to better formulate medical plans.ApproachWe propose a deep-learning model for segmenting colon polyps. The model adopts a dual-branch structure, combines a convolutional neural network (CNN) with a transformer, and replaces ordinary convolution with deeply separable convolution based on ResNet; a stripe pooling module is introduced to obtain more effective information. The aggregated attention module (AAM) is proposed for high-dimensional semantic information, which effectively combines two different structures for the high-dimensional information fusion problem. Deep supervision and multi-scale training are added in the model training process to enhance the learning effect and generalization performance of the model.ResultsThe experimental results show that the proposed dual-branch structure is significantly better than the single-branch structure, and the model using the AAM has a significant performance improvement over the model not using the AAM. Our model leads 1.1% and 1.5% in mIoU and mDice, respectively, when compared with state-of-the-art models in a fivefold cross-validation on the Kvasir-SEG dataset.ConclusionsWe propose and validate a deep learning model for segmenting colon polyps, using a dual-branch network structure. Our results demonstrate the feasibility of complementing traditional CNNs and transformer with each other. And we verified the feasibility of fusing different structures on high-dimensional semantics and successfully retained the high-dimensional information of different structures effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456发布了新的文献求助10
1秒前
2秒前
2秒前
医学练习生wl完成签到,获得积分10
3秒前
ndj发布了新的文献求助10
3秒前
如意葶发布了新的文献求助10
3秒前
4秒前
七慕凉给rxy的求助进行了留言
5秒前
整齐的小松鼠完成签到,获得积分10
5秒前
6秒前
Orange应助舒适亦凝采纳,获得10
6秒前
x菜鸡博士发布了新的文献求助30
6秒前
小马甲应助hubo采纳,获得10
7秒前
小蘑菇应助如意葶采纳,获得10
7秒前
8秒前
lilil完成签到,获得积分10
8秒前
9秒前
淡定傲儿发布了新的文献求助10
9秒前
changge发布了新的文献求助10
9秒前
科研通AI5应助mochen0722采纳,获得10
10秒前
花生米完成签到,获得积分10
10秒前
李一意完成签到,获得积分20
10秒前
桐桐应助徐风年采纳,获得10
11秒前
一ER发布了新的文献求助10
11秒前
奋斗若风发布了新的文献求助10
11秒前
tramp应助TT采纳,获得10
11秒前
Lucas应助滴滴哒要毕业采纳,获得10
12秒前
李一意发布了新的文献求助10
13秒前
13秒前
脑洞疼应助高贵的斑马采纳,获得10
14秒前
HAHA完成签到 ,获得积分10
14秒前
lilil发布了新的文献求助10
14秒前
科研通AI5应助Tina采纳,获得10
14秒前
愉快绿蝶完成签到,获得积分10
14秒前
lxx发布了新的文献求助10
15秒前
18秒前
Dado完成签到,获得积分10
18秒前
19秒前
生而向阳完成签到,获得积分20
19秒前
Kyrie完成签到,获得积分20
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732864
求助须知:如何正确求助?哪些是违规求助? 3276998
关于积分的说明 10000153
捐赠科研通 2992728
什么是DOI,文献DOI怎么找? 1642442
邀请新用户注册赠送积分活动 780369
科研通“疑难数据库(出版商)”最低求助积分说明 748789