CMNet: deep learning model for colon polyp segmentation based on dual-branch structure

医学 卷积神经网络 深度学习 人工智能 分割 结肠镜检查 模式识别(心理学) 结直肠癌 癌症 内科学 计算机科学
作者
Xuguang Cao,Kefeng Fan,Cun Xu,Huilin Ma,Kaijie Jiao
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:11 (02) 被引量:1
标识
DOI:10.1117/1.jmi.11.2.024004
摘要

PurposeColon cancer is one of the top three diseases in gastrointestinal cancers, and colon polyps are an important trigger of colon cancer. Early diagnosis and removal of colon polyps can avoid the incidence of colon cancer. Currently, colon polyp removal surgery is mainly based on artificial-intelligence (AI) colonoscopy, supplemented by deep-learning technology to help doctors remove colon polyps. With the development of deep learning, the use of advanced AI technology to assist in medical diagnosis has become mainstream and can maximize the doctor's diagnostic time and help doctors to better formulate medical plans.ApproachWe propose a deep-learning model for segmenting colon polyps. The model adopts a dual-branch structure, combines a convolutional neural network (CNN) with a transformer, and replaces ordinary convolution with deeply separable convolution based on ResNet; a stripe pooling module is introduced to obtain more effective information. The aggregated attention module (AAM) is proposed for high-dimensional semantic information, which effectively combines two different structures for the high-dimensional information fusion problem. Deep supervision and multi-scale training are added in the model training process to enhance the learning effect and generalization performance of the model.ResultsThe experimental results show that the proposed dual-branch structure is significantly better than the single-branch structure, and the model using the AAM has a significant performance improvement over the model not using the AAM. Our model leads 1.1% and 1.5% in mIoU and mDice, respectively, when compared with state-of-the-art models in a fivefold cross-validation on the Kvasir-SEG dataset.ConclusionsWe propose and validate a deep learning model for segmenting colon polyps, using a dual-branch network structure. Our results demonstrate the feasibility of complementing traditional CNNs and transformer with each other. And we verified the feasibility of fusing different structures on high-dimensional semantics and successfully retained the high-dimensional information of different structures effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马大翔完成签到,获得积分10
2秒前
跳跃的鹏飞完成签到 ,获得积分10
5秒前
luochen完成签到,获得积分10
8秒前
昵称完成签到 ,获得积分10
11秒前
Ashley完成签到 ,获得积分10
12秒前
我就想看看文献完成签到 ,获得积分10
12秒前
深深完成签到,获得积分10
22秒前
JaneChen完成签到 ,获得积分10
22秒前
巾凡完成签到 ,获得积分10
27秒前
Accept完成签到,获得积分10
29秒前
i2stay完成签到,获得积分10
34秒前
蔡蕾丝完成签到,获得积分10
42秒前
旺仔完成签到 ,获得积分10
45秒前
goodsheep完成签到 ,获得积分10
47秒前
我和你完成签到 ,获得积分10
50秒前
芮Echo完成签到,获得积分10
57秒前
lizef完成签到 ,获得积分10
57秒前
苏云墨完成签到 ,获得积分10
57秒前
ii完成签到 ,获得积分10
1分钟前
danli完成签到 ,获得积分10
1分钟前
科研通AI2S应助芮Echo采纳,获得10
1分钟前
梓歆完成签到 ,获得积分10
1分钟前
OKay呀完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助xuaotian采纳,获得10
1分钟前
积极盼山完成签到 ,获得积分10
1分钟前
1Yer6完成签到 ,获得积分10
1分钟前
lzt完成签到 ,获得积分10
1分钟前
1分钟前
机灵的啤酒完成签到 ,获得积分10
1分钟前
xuaotian发布了新的文献求助10
1分钟前
在路上应助kol采纳,获得10
1分钟前
reset完成签到 ,获得积分10
1分钟前
xuaotian完成签到,获得积分10
1分钟前
牛奶面包完成签到 ,获得积分10
1分钟前
HJBF666完成签到 ,获得积分10
1分钟前
当女遇到乔完成签到 ,获得积分10
1分钟前
shiyi完成签到 ,获得积分10
2分钟前
燕山堂完成签到 ,获得积分10
2分钟前
鲤鱼灵阳完成签到,获得积分10
2分钟前
Avicii完成签到 ,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137039
求助须知:如何正确求助?哪些是违规求助? 2788025
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625536
版权声明 601010