材料科学
荧光粉
红外线的
光电子学
格子(音乐)
氧化物
氯
工程物理
纳米技术
光学
声学
冶金
工程类
物理
作者
Qianqian Zhao,Wenqi Xia,Longsheng Du,Feng Du,Zhihua Leng,Na Wang,Zuobin Tang
标识
DOI:10.1002/adfm.202408177
摘要
Abstract Near‐infrared (NIR) phosphor‐converted light–emitting diodes (pc‐LEDs) are increasingly used in night vision, surveillance, and biomedicine. A major challenge is to identify a phosphor that efficiently converts blue light into wideband NIR emission. In this paper, a rare‐earth divalent europium (Eu 2+ )‐activated halogen oxide (Sr 3 GeO 4 Cl 2 ) phosphor is unlocked via a high‐temperature solid‐state reaction. The Sr 3 GeO 4 Cl 2 :Eu 2+ phosphor emits a wide spectrum (500–950 nm) with a peak at 700 nm when excited by 450 nm blue light. Extended X‐ray absorption fine structure (EXAFS) analysis reveals that the NIR emission primarily originates from Eu 2+ ions, and the Eu─O bond length closely resembles the Sr─O bond length. Lattice engineering, specifically Ge/Si cation substitution, increased Eu 2+ incorporation into the crystal lattice, boosting luminescence intensity by 75%–122% and quantum efficiency from 15% to 26%. This is related to the combined effect of reduced non‐radiative energy transfer and changes in the local lattice structure of Eu 2+ . A NIR pc‐LED device using the optimized phosphor showed a photoelectric efficiency of 16.5% and an optical output of 25.07 mW at 100 mA. This study not only explores new Eu 2+ ‐activated NIR phosphors but also highlights the importance of crystal engineering to enhance luminescence properties, guiding future research for efficient NIR pc‐LED development.
科研通智能强力驱动
Strongly Powered by AbleSci AI